
New Open Source Design
Verification Tools from YosysHQ

N. Engelhardt

Contents

● Yosys and Yosys-based Tools

○ Yosys
○ SBY formal property checker
○ MCY mutation coverage

● New Developments
○ EQY equivalence checker

■ Example: Equivalence Checking an
○ SCY cover sequence generator

● Get the Tools

● Questions

2

Yosys and Yosys-based Tools

3

Yosys – a swiss army knife for netlists

● Open Source project started in 2012 by Claire Wolf
○ Originally a synthesis tool for an academic CGRA
○ Grew in capabilities and language support

● Now a tool that can be applied in many different contexts,
anytime you need to transform netlists

○ Used as "glue" between many third-party tools
○ And for architecture exploration
○ But also a fully-fledged synthesis tool, used e.g. in the OpenLANE ASIC flow and by some

FPGA vendors
■ Much of the heavy lifting is done by abc - stay for the next talk to learn details!

4

Yosys – input and output formats

● Input formats:
○ Verilog
○ JSON
○ Aiger
○ Blif
○ Liberty
○ VHDL (GHDL plugin)

● Commercial Edition adds:
○ SystemVerilog
○ SystemVerilog Assertions
○ VHDL

● Output formats
○ Verilog
○ JSON
○ Blif
○ EDIF
○ FIRRTL
○ Aiger
○ SMT2
○ BTOR2
○ C++ (simulation)
○ Truth table

Full List of Commands:
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

5

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

Yosys – Transformations

● General structure of Yosys-based flows
○ Run commands to read and elaborate the design
○ Run coarse-grain optimization commands
○ (Optional: Map to a fine-grain representation and run fine-grain optimizations)
○ Run back-end command to write design to output file

● Creating custom functionality using existing passes
○ Yosys has a rich set of commands to

■ Elaborate, simplify, infer, synthesize, technology map, simulate, …
■ See https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

○ One can get very far with creative selections of design elements and combinations of passes

● Creating custom functionality using custom passes
○ Techmap rules (module substitution - verilog file with special names)
○ Plugins (C++) can add custom passes with the same API used by internal passes
○ Pattern Matcher Generator - find subgraphs and modify/replace them

6

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

SBY – formal property checking with Yosys

● Frontend for formal flows
○ Allows easy use of SystemVerilog assume(), assert(), cover() statements

■ Complex SVA properties/sequences are supported with the commercial version
○ SBY has modes for bounded and unbounded proofs

■ Support for different unbounded proof methods (k-induction, pdr/ic3)

● Automates the steps for running formal proofs with Yosys
○ Yosys translation of design to formal problem formats (SMT2, BTOR2, Aiger…)
○ Running solvers to find a set of signal values responding to the problem (or not)

■ Allows using many solvers being developed by researchers
○ Using Yosys to translate the set of variable assignments back into a VCD trace

● Myriad of different input/output formats “under the hood”
○ SBY provides a uniform interface for a wide range of solvers, hiding those differences.

● Example projects:
○ riscv-formal: formally verify ISA compliance (rv32imc/rv64imc) https://github.com/YosysHQ/riscv-formal/
○ AXI4 formal verification IP (requires SVA support) https://github.com/YosysHQ-GmbH/SVA-AXI4-FVIP

7

https://github.com/YosysHQ/riscv-formal/
https://github.com/YosysHQ-GmbH/SVA-AXI4-FVIP

SBY – formal property checking with Yosys

8

MCY – Mutation Coverage with Yosys

● Mutation coverage is a coverage metric for testbenches
○ Solves the issue of false negatives that is inherent to execution/branch coverage
○ Introduce modifications to the DUT and see if each modification causes the tests to fail
○ Yosys modifies the netlist and outputs a modified module to instantiate in the testbench
○ Works with any self-checking test environment that accepts a synthesized DUT

● Main Problem with Mutation coverage: False Positives
○ Some mutations don't violate the design spec, so it’s fine for the test bench not to fail for them

● MCY Solution: Filter False Positives with formal equivalence checks
○ Create a miter circuit with mutated and non-mutated design, to let the formal method investigate the

functional change introduced by such a mutation
○ Optional: Write properties taking into account when differences are relevant

■ e.g., only compare data if data_valid is high
■ Much easier than writing formal properties about the expected value of data

○ Mutations that create no relevant functional change are discarded automatically
○ Can run the formal checks in SBY, or interface with formal tools from other vendors

9

MCY – Mutation Coverage with Yosys

10

New Developments

11

EQY – Equivalence Checking with Yosys

● Our brand new equivalence checking tool
● Identifies matching points in two designs

○ Then partitions the design into smaller pieces that can be checked independently
○ Scales much better than using SBY on a miter circuit
○ Much easier to identify parts of design that cause scaling issues

● Application domains
○ Ensure post-synthesis netlist is the same as input design
○ Check that a non-functional change does not change the behavior of the design

● Example/tutorial projects included with the tool
○ Verification of a design change in ALU/shifter architecture in NERV RISC-V Processor
○ Verification of Xilinx Vivado synthesis output for PicoRV32 processor design

12

Equivalence Checking an OpenLANE/SKY130 Netlist

● Starting from a small example design (spm), walking through the process for
using EQY to compare the netlist produced by OpenLANE to the original RTL

Files:

● spm.v : the original source code
● spm.nl.v : the netlist, found in results/final/verilog
● primitives.v and sky130_fd_sc_hd.v : the cell library simulation

models from the SkyWater PDK.

13

Adapting the simulation models

● The simulation library provided with the SkyWater PDK can't be directly read
in with yosys (e.g., some `ifdef branches have unsupported syntax).

● My colleague Jannis wrote a small script that makes a few modifications:
○ Resolves `ifdefs (with an implicit `FUNCTIONAL define) and removes `UNIT_DELAY .

(This isn't a full Verilog preprocessor, but it's enough to handle the PDK Verilog files.)
○ Adds (* noblackbox *) attributes to all modules, as the PDK contains some modules

without logic.
○ Replaces pullup and pulldown primitives which Yosys doesn't support with mod_pullup

and mod_pulldown instances.
○ Replaces pwrgood with primitives that assume the power is always good.
○ Automatically replaces combinational UDPs with a casez-based module implementation.
○ Replaces the few remaining stateful UDPs with manually written synthesizable modules.

14

Setting up the EQY Project (spm.eqy)

● [gold]: yosys commands that run
only on original RTL

● [gate]: yosys commands that run
only on netlist

● [script]: yosys commands that
run on both

● [strategy …]: proof methods to
try on partitions of the design

○ 'sat' is the yosys-internal sat command
○ 'sby' creates an SBY project
○ tried in order, the second strategy is

used if the first is inconclusive
○ we are planning to add more strategies

[gold]
read_verilog -formal spm.v

[gate]
exec -- python3 formal_pdk_proc.py
primitives.v sky130_fd_sc_hd.v -o
spm/formal_pdk.v
read -sv spm/formal_pdk.v spm.nl.v

[script]
hierarchy -check -top spm
prep
async2sync

[strategy sat]
use sat
depth 2

[strategy sby]
use sby
depth 2
engine smtbmc bitwuzla

15

Running EQY

● eqy -f spm.eqy
● runs the specified scripts to read in the gold and gate designs
● partially flattens on either side until the hierarchy of both matches
● matches wires on both sides to find equivalent points (by name)
● fragments the design into small pieces along equivalent points
● groups fragments together to form partitions
● proves each partition equivalent by trying several strategies

○ this is sequential equivalence, including state, e.g. using k-induction
● concludes about the design overall.

16

Additional challenges in more complex designs

● Guiding the tool in finding equivalent points
○ If a different synthesis tool is used, the net bearing the same name in the gate may not have

the same semantics
■ [match …] section

○ FSM recoding
■ [recode …] section

● Guiding the tool in fragmenting and partitioning the design
○ Sometimes fragments and partitions get too small
○ If signals are related, certain portions of the design are only equivalent if this relationship is

known (e.g. a xor b is equivalent to 1 if you know that a = ~b)
■ [collect …] and [partition …] sections

17

Running EQY

18

SCY – Sequence of Covers with Yosys

● Sneak peek at our next development:

A formal methodology and tool for generating long cover traces for large
designs, based on “checkpoint” cover properties, that the tool eagerly
solves one-by-one, using the final state of one property as the initial state
of the next.

● Example Applications:
○ Creating formal cover traces for complex bus interactions on large SoC designs.
○ Using formal tools to create a assembler programs to put a processor in difficult to reach

states of its state-space

19

Data-Flow Properties

● With SCY we will also introduce a methodology for formal data-flow properties, for
example:

○ Cover a trace that shows top.Bus.ComponentA.DOUT_VALID and
top.Bus.ComponentA.DOUT_READY active in cycle t1,

○ and top.Bus.ComponentB.DIN_VALID and
top.Bus.ComponentB.DIN_READY active in cycle t2,

○ and top.Bus.ComponentB.DIN_DATA at t2 is a function of
top.Bus.ComponentA.DOUT_DATA at t1.

● Where “is a function of” means we can show data-flow (of a configurable kind) from
the input to the output.

● This functionality is especially useful for the kind of properties we are building SCY
for, but will be made available in all our formal flows.

20

Get the Tools

21

Try it out!

● Download nightly builds of the OSS CAD Suite
○ https://github.com/YosysHQ/oss-cad-suite-build/releases/latest
○ Includes Yosys, SBY, MCY, all dependencies, supported solvers, GHDL plugin (linux only)
○ Also nextpnr, Amaranth, cocotb, …

● Documentation: https://yosyshq.readthedocs.io/en/latest/

● Ask me for an evaluation license to the commercial Tabby CAD Suite
○ Email contact@yosyshq.com or tick a box on https://www.yosyshq.com/contact

22

https://github.com/YosysHQ/oss-cad-suite-build/releases/latest
https://yosyshq.readthedocs.io/en/latest/
mailto:contact@yosyshq.com
https://www.yosyshq.com/contact

Thank You

● to our excellent dev team

● in particular to the colleagues who helped with this presentation:
○ Claire Wolf
○ Jannis Harder
○ Matt Venn

● to contributors on github

● to you for listening!

23

Q&A

24

