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Yosys and Yosys-based Tools
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Yosys – a swiss army knife for netlists

● Open Source project started in 2012 by Claire Wolf
○ Originally a synthesis tool for an academic CGRA
○ Grew in capabilities and language support

● Now a tool that can be applied in many different contexts, 
anytime you need to transform netlists

○ Used as "glue" between many third-party tools
○ And for architecture exploration
○ But also a fully-fledged synthesis tool, used e.g. in the OpenLANE ASIC flow and by some 

FPGA vendors
■ Much of the heavy lifting is done by abc - stay for the next talk to learn details!
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Yosys – input and output formats

● Input formats:
○ Verilog
○ JSON
○ Aiger
○ Blif
○ Liberty
○ VHDL (GHDL plugin)

● Commercial Edition adds:
○ SystemVerilog
○ SystemVerilog Assertions
○ VHDL

● Output formats
○ Verilog
○ JSON
○ Blif
○ EDIF
○ FIRRTL
○ Aiger
○ SMT2
○ BTOR2
○ C++ (simulation)
○ Truth table

Full List of Commands: 
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html
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Yosys – Transformations

● General structure of Yosys-based flows
○ Run commands to read and elaborate the design
○ Run coarse-grain optimization commands
○ (Optional: Map to a fine-grain representation and run fine-grain optimizations)
○ Run back-end command to write design to output file

● Creating custom functionality using existing passes
○ Yosys has a rich set of commands to

■ Elaborate, simplify, infer, synthesize, technology map, simulate, …
■ See https://yosyshq.readthedocs.io/projects/yosys/en/latest/cmd_ref.html

○ One can get very far with creative selections of design elements and combinations of passes

● Creating custom functionality using custom passes
○ Techmap rules (module substitution - verilog file with special names)
○ Plugins (C++) can add custom passes with the same API used by internal passes
○ Pattern Matcher Generator - find subgraphs and modify/replace them
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SBY – formal property checking with Yosys

● Frontend for formal flows
○ Allows easy use of SystemVerilog assume(), assert(), cover()  statements

■ Complex SVA properties/sequences are supported with the commercial version
○ SBY has modes for bounded and unbounded proofs

■ Support for different unbounded proof methods (k-induction, pdr/ic3)

● Automates the steps for running formal proofs with Yosys
○ Yosys translation of design to formal problem formats (SMT2, BTOR2, Aiger…)
○ Running solvers to find a set of signal values responding to the problem (or not)

■ Allows using many solvers being developed by researchers
○ Using Yosys to translate the set of variable assignments back into a VCD trace

● Myriad of different input/output formats “under the hood”
○ SBY provides a uniform interface for a wide range of solvers, hiding those differences.

● Example projects:
○ riscv-formal: formally verify ISA compliance (rv32imc/rv64imc) https://github.com/YosysHQ/riscv-formal/ 
○ AXI4 formal verification IP (requires SVA support) https://github.com/YosysHQ-GmbH/SVA-AXI4-FVIP 
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SBY – formal property checking with Yosys
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MCY – Mutation Coverage with Yosys

● Mutation coverage is a coverage metric for testbenches
○ Solves the issue of false negatives that is inherent to execution/branch coverage
○ Introduce modifications to the DUT and see if each modification causes the tests to fail
○ Yosys modifies the netlist and outputs a modified module to instantiate in the testbench
○ Works with any self-checking test environment that accepts a synthesized DUT

● Main Problem with Mutation coverage: False Positives
○ Some mutations don't violate the design spec, so it’s fine for the test bench not to fail for them

● MCY Solution: Filter False Positives with formal equivalence checks
○ Create a miter circuit with mutated and non-mutated design, to let the formal method investigate the 

functional change introduced by such a mutation
○ Optional: Write properties taking into account when differences are relevant

■ e.g., only compare data if data_valid is high
■ Much easier than writing formal properties about the expected value of data

○ Mutations that create no relevant functional change are discarded automatically
○ Can run the formal checks in SBY, or interface with formal tools from other vendors
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MCY – Mutation Coverage with Yosys
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New Developments
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EQY – Equivalence Checking with Yosys

● Our brand new equivalence checking tool
● Identifies matching points in two designs

○ Then partitions the design into smaller pieces that can be checked independently
○ Scales much better than using SBY on a miter circuit
○ Much easier to identify parts of design that cause scaling issues

● Application domains
○ Ensure post-synthesis netlist is the same as input design
○ Check that a non-functional change does not change the behavior of the design

● Example/tutorial projects included with the tool
○ Verification of a design change in ALU/shifter architecture in NERV RISC-V Processor
○ Verification of Xilinx Vivado synthesis output for PicoRV32 processor design
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Equivalence Checking an OpenLANE/SKY130 Netlist

● Starting from a small example design (spm), walking through the process for 
using EQY to compare the netlist produced by OpenLANE to the original RTL

Files:

● spm.v : the original source code
● spm.nl.v : the netlist, found in results/final/verilog
● primitives.v and sky130_fd_sc_hd.v : the cell library simulation 

models from the SkyWater PDK.
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Adapting the simulation models

● The simulation library provided with the SkyWater PDK can't be directly read 
in with yosys (e.g., some `ifdef branches have unsupported syntax).

● My colleague Jannis wrote a small script that makes a few modifications:
○ Resolves `ifdefs (with an implicit `FUNCTIONAL  define) and removes `UNIT_DELAY .

(This isn't a full Verilog preprocessor, but it's enough to handle the PDK Verilog files.)
○ Adds (* noblackbox *)  attributes to all modules, as the PDK contains some modules 

without logic.
○ Replaces pullup and pulldown  primitives which Yosys doesn't support with mod_pullup  

and mod_pulldown  instances.
○ Replaces pwrgood with primitives that assume the power is always good.
○ Automatically replaces combinational UDPs with a casez-based module implementation.
○ Replaces the few remaining stateful UDPs with manually written synthesizable modules.
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Setting up the EQY Project (spm.eqy)

● [gold]: yosys commands that run 
only on original RTL

● [gate]: yosys commands that run 
only on netlist

● [script]: yosys commands that 
run on both

● [strategy …]: proof methods to 
try on partitions of the design

○ 'sat' is the yosys-internal sat command
○ 'sby' creates an SBY project
○ tried in order, the second strategy is 

used if the first is inconclusive
○ we are planning to add more strategies

[gold]
read_verilog -formal spm.v

[gate]
exec -- python3 formal_pdk_proc.py 
primitives.v sky130_fd_sc_hd.v -o 
spm/formal_pdk.v
read -sv spm/formal_pdk.v spm.nl.v

[script]
hierarchy -check -top spm
prep
async2sync

[strategy sat]
use sat
depth 2

[strategy sby]
use sby
depth 2
engine smtbmc bitwuzla
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Running EQY

● eqy -f spm.eqy
● runs the specified scripts to read in the gold and gate designs
● partially flattens on either side until the hierarchy of both matches
● matches wires on both sides to find equivalent points (by name)
● fragments the design into small pieces along equivalent points
● groups fragments together to form partitions
● proves each partition equivalent by trying several strategies

○ this is sequential equivalence, including state, e.g. using k-induction
● concludes about the design overall.
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Additional challenges in more complex designs

● Guiding the tool in finding equivalent points
○ If a different synthesis tool is used, the net bearing the same name in the gate may not have 

the same semantics
■ [match …] section

○ FSM recoding
■ [recode …] section

● Guiding the tool in fragmenting and partitioning the design
○ Sometimes fragments and partitions get too small
○ If signals are related, certain portions of the design are only equivalent if this relationship is 

known (e.g. a xor b is equivalent to 1 if you know that a = ~b)
■ [collect …] and [partition …] sections
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Running EQY
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SCY – Sequence of Covers with Yosys

● Sneak peek at our next development:

A formal methodology and tool for generating long cover traces for large 
designs, based on “checkpoint” cover properties, that the tool eagerly 
solves one-by-one, using the final state of one property as the initial state 
of the next.

● Example Applications:
○ Creating formal cover traces for complex bus interactions on large SoC designs.
○ Using formal tools to create a assembler programs to put a processor in difficult to reach 

states of its state-space
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Data-Flow Properties

● With SCY we will also introduce a methodology for formal data-flow properties, for 
example:

○ Cover a trace that shows top.Bus.ComponentA.DOUT_VALID and 
top.Bus.ComponentA.DOUT_READY active in cycle t1,

○ and top.Bus.ComponentB.DIN_VALID and
top.Bus.ComponentB.DIN_READY active in cycle t2,

○ and top.Bus.ComponentB.DIN_DATA at t2 is a function of
top.Bus.ComponentA.DOUT_DATA at t1.

● Where “is a function of” means we can show data-flow (of a configurable kind) from 
the input to the output.

● This functionality is especially useful for the kind of properties we are building SCY 
for, but will be made available in all our formal flows.
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Get the Tools
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Try it out!

● Download nightly builds of the OSS CAD Suite
○ https://github.com/YosysHQ/oss-cad-suite-build/releases/latest 
○ Includes Yosys, SBY, MCY, all dependencies, supported solvers, GHDL plugin (linux only)
○ Also nextpnr, Amaranth, cocotb, …

● Documentation: https://yosyshq.readthedocs.io/en/latest/ 

● Ask me for an evaluation license to the commercial Tabby CAD Suite
○ Email contact@yosyshq.com or tick a box on https://www.yosyshq.com/contact 
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Thank You

● to our excellent dev team

● in particular to the colleagues who helped with this presentation:
○ Claire Wolf
○ Jannis Harder
○ Matt Venn

● to contributors on github 

● to you for listening!

23



Q&A
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