

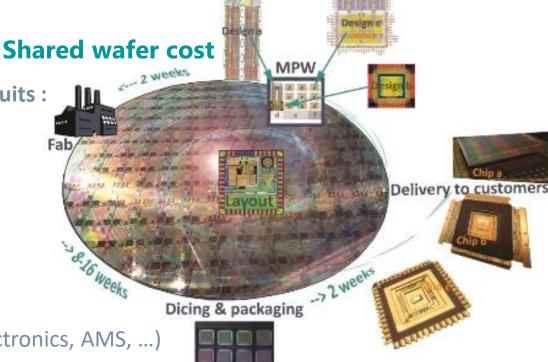
65nm CMOS Design-Flows on Free and Open-Source Tools : An Overview

Kholdoun TORKI

CMP

46, Avenue Félix Viallet 38031 Grenoble, France

https://mycmp.fr


CMP Service using MPW runs

CMP makes affordable the access to prototyping & low volume production:

- Advanced Technologies.
- Manage the Confidentiality.
- Silicon cost sharing.

Full cycle from concept to packaged circuits:

- Manage NDA for user's access.
- Design-kits Distribution.
- > Technical support.
- Design Verification support.
- Designs clustering / Reticle.
- Fabrication at Foundries (STMicroelectronics, AMS, ...)
- Additional services (dicing, thinning, packaging, ...)
- Circuits Delivery to customers.

Summary

- > Introduction
- Full-custom PDK & Design-Flow on a 65nm CMOS :
 - Techfiles, devices symbols and P-cells.
 - Custom GUI for Spice and waveform viewer
- RTL-to-GDS Digital Design-Flow in a 65nm CMOS :
 - Techfiles, standard-cell libraries.
 - Custom scripts and GUI interface
- Demos of the 2 design-flows
- Conclusion

Introduction

- ☐ Today, Free and Open-source CAD tools are gaining performance, compliance to standard EDA formats, better support for scripting and GUI, then allowing more interoperability.
- ☐ Very few Silicon Foundries are exploring seriously open-source CAD tools (e.g. the Google/SkyWater initiative for open PDK 130nm CMOS).
- Free and open-source CAD tools used in this work :
 - Glade: IC layout / schematic editor (reading and writing common EDA formats), with DRC, LVS, PEX.
 - NGspice: Spice simulator
 - Gaw: Analog waveform viewer
 - Icarus Verilog: Verilog simulator
 - **GTKwaves**: Digital waveform viewer
 - YOSYS : Logic Synthesis
 - OpenROAD: Automatic Place & Route Framework: (ICeWall, ioPlacer, iFP, Tapcell, PDNGEN, RePlAce, OpenDP, TritonCTS, FastRoute, TritonRoute, OpenRCX, OpenSTA, and more ...)
 - KLayout : Viewer and Editor
- ☐ Goal : Define consistent design-flows running free & open-source tool-chains with a Foundry PDK & std-cells libraries.

Full-Custom Design-Flow

Full-Custom Design-Flow

65nm Full-Custom Design Flow

Front-end CAD Tools :

Front-End

Schematic entry / Spice simulation / Waveform :

Glade http://www.peardrop.co.uk

Ngspice https://ngspice.sourceforge.io

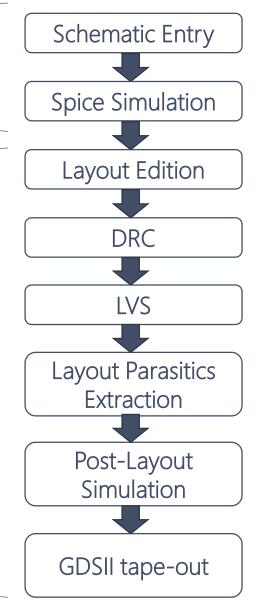
GAW https://gaw.tuxfamily.org

schematic layout

- Unified cellview concept :
 - layout, schematic, symbol, netlist, extracted

BackEnd

Backend CAD Tools :


SDL / Layout / DRC / LVS / PEX :

Glade http://www.peardrop.co.uk

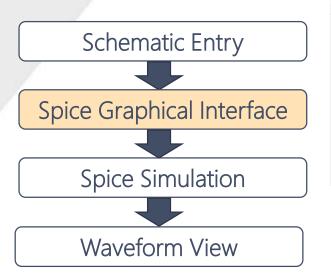
Gemini: (embedded in Glade)

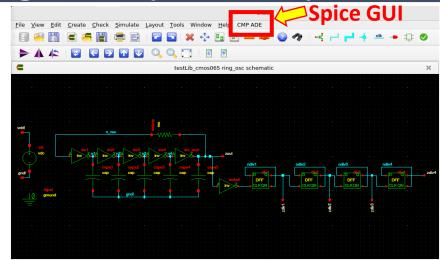
https://www.cs.washington.edu/research/gemini-netlist-comparison-project

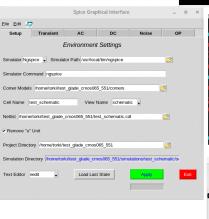
Ngspice + GAW for Post-layout Simulation

65nm Full-Custom Design Flow (front-end)

Front-end CAD Flow :

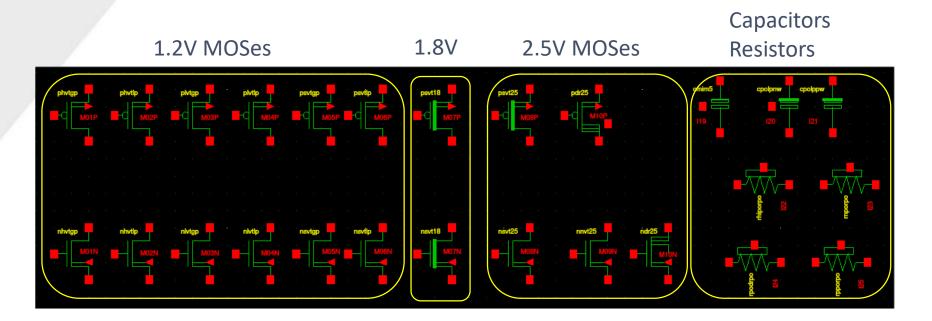

Schematic entry / Spice simulation tools
 Waveform viewer :


Glade http://www.peardrop.co.uk


Spice GUI (TCL/TK custom development)


Ngspice https://ngspice.sourceforge.io

GAW https://gaw.tuxfamily.org

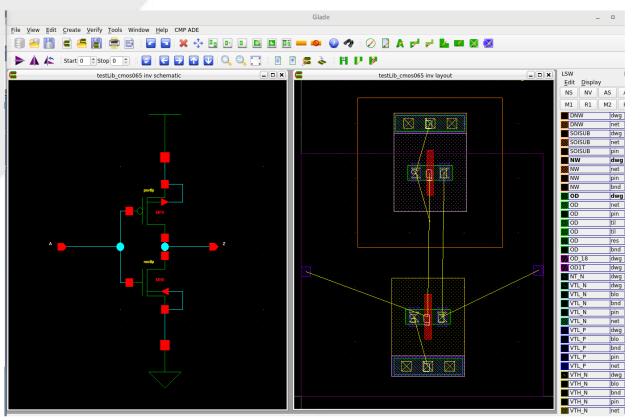


65nm Full-Custom Design Flow (front-end)

Front-end PDK:

- Schematic entry: 27 Device symbols (MOS, capacitors, resistors)
- Spice Graphical Interface: 1'500+ lines in TCL/TK compiled using freewrap: https://sourceforge.net/projects/freewrap
- Spice simulation: Foundry MOS models are BSIM4v5 Spice models fully supported by Ngspice. RAW format is generated for waveforms.
- Waveform viewer : GAW for waveforms display (RAW format).

65nm Full-Custom Design Flow (backend)

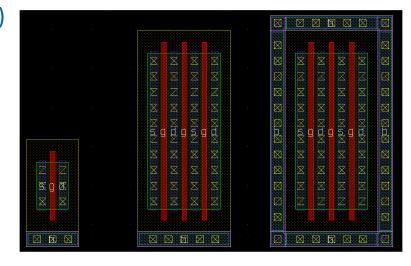

Backend CAD Tools :


Layout Editor with SDL / DRC / LVS / PEX:

Glade http://www.peardrop.co.uk

Gemini: (integrated to Glade)

https://www.cs.washington.edu/research/gemini-netlist-comparison-project



65nm Full-Custom Design Flow (backend)

- Primitive devices available as Pcells : MOS, Capacitors, Resistors
 - Pcells are written in Python (compiled with Cython)
 - MOS is in the range of 250-500 lines code per cell.
 - About 11k lines written for all primitive devices.
 - MOSes features :
 - Multi-fingers,
 - Parametrized guardring & Taps.

- MiM capacitors features :
 - Callbacks between W & L and C
 - 100% balanced Vias count on plates (no antenna rules violation)

Video Demo Spice Simulation

Video Demo Spice Simulation

Full-Custom Design-Flow

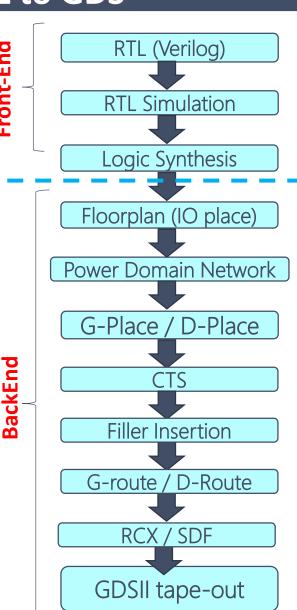
RTL to GDS Digital Design-Flow

65nm Digital Design Flow RTL to GDS

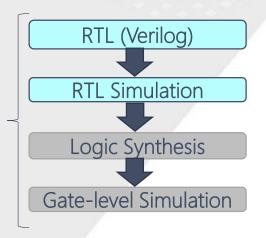
Front-End

Front-end CAD Tools:

RTL simulation / Waveform / Logic Synthesis:

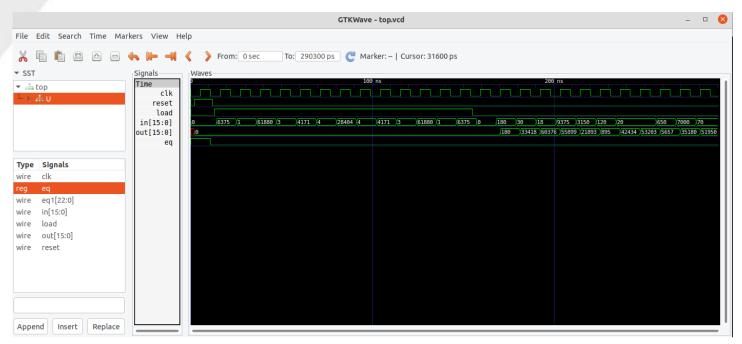

Icarus Verilog http://iverilog.icarus.com

GTKWave http://gtkwave.sourceforge.net

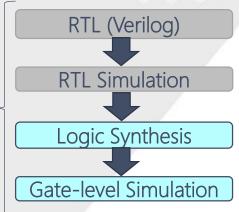

YOSYS https://yosyshq.net/yosys

Backend CAD Tools:

Floorplan / P&R / CTS / RCX / GDSII Layout : **OpenROAD**: Automatic Place & Route Framework: (ICeWall, ioPlacer, iFP, Tapcell, PDNGEN, RePlAce, OpenDP, TritonCTS, FastRoute, TritonRoute, OpenRCX, OpenSTA, and more ...) https://theopenroadproject.org **KLayout** https://www.klayout.de

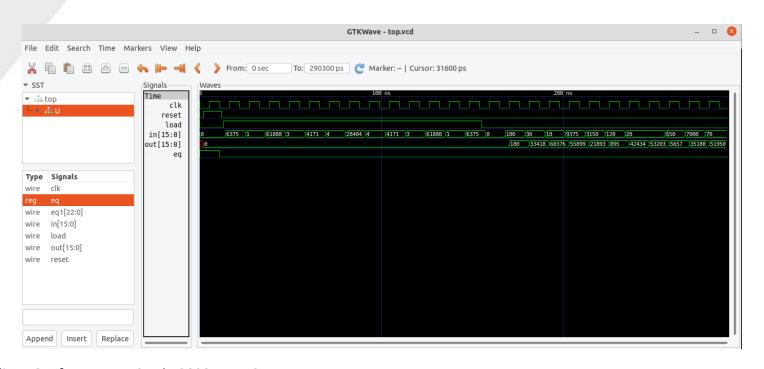


Digital Design-Flow (Front-end)

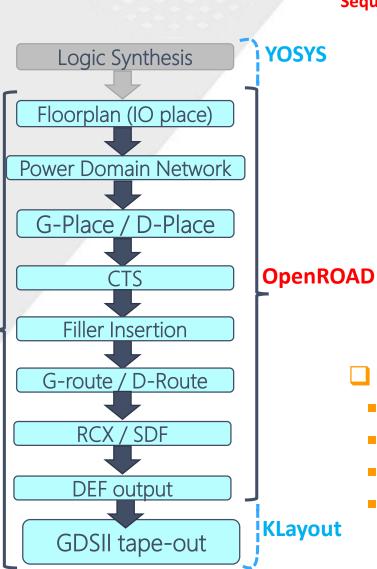


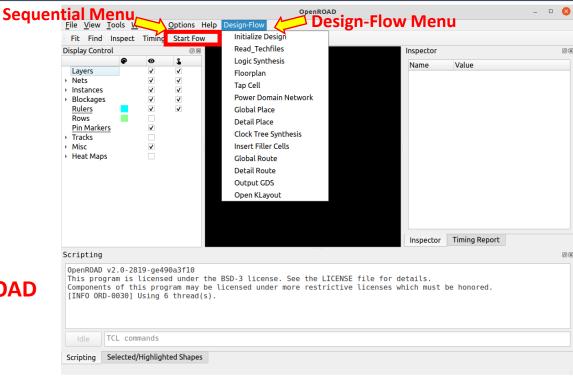
Verilog RTL Simulation:

RTL code + Testbench
 iverilog => vpp => VCD file (Value Change Dump)
 VCD file => GTKWave



Digital Design-Flow (Front-end)


Verilog Synthesis:


- RTL code + SDC file (constraints) + std-cells Liberty (.lib)
 Yosys / ABC => Verilog Gate-level Netlist
- Verilog Netlist + Testbench + Verilog std-cells library
 iverilog => vpp => VCD file (Value Change Dump)
 VCD file => GTKWave

BackEnd

Digital Design-Flow (Backend)

Automatic Place & Route:

- OpenROAD is a toolchain Framework.
- YOSYS added at front.
- Klayout added at end.
 - Custimized TCL/TK scripts (600 lines) easily running with any design adding to the GUI:
 - ✓ Scrolling menu
 - ✓ Sequential buttons menu

Video Demo RTL to GDS

Video Demo RTL to GDS

Conclusion & Perspectives

- Complete full-custom design-flow with tools-chaining & integrated environment on a 65nm CMOS.
- Complete Digital design-flow from RTL to GDS on a 65nm CMOS technology.
- Reference Foundry's PDK has been used almost as is to ensure the free and open-source EDA tools running consistently through the reference flows.
- Need a deep discussion with Foundries how to make these development available to the community and explore the common interest.
- Still some issues to be solved :
 - ✓ DRC rules are implemented with a coverage of 85%. Some specific DRC rules are not implemented.
 - ✓ Same for analog parasitic extraction : the performance and accuracy of the 2.5D is not meeting the Foundry's reference tools (sign-off tools).
 - ✓ SDF back-annotation not working with Icarus Verilog (?)