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GHDL as a simulator 
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What is GHDL ?

● A VHDL simulator
● Command line tool

https://github.com/ghdl/ghdl

● Open source (GPLv2)
● Binaries for Linux (x86/x86-64), Windows, Mac

https://github.com/ghdl/ghdl
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1 slide demo

entity hello is
end hello;

architecture behav of hello is
begin
  assert false
   report "Hello VHDL world" severity note;
end behav;

$ ghdl -a hello.vhdl   # analysis
$ ghdl -e hello        # elaboration
$ ghdl -r hello        # simulation
hello.vhdl:6:3:@0ms:(assertion note): Hello VHDL world

hello.vhdl
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Main features

● Compiled (gcc, llvm or internal back-ends)

● Full support of 87, 93, and 02 standards
● 08 standard mostly supported
● PSL (Property Specification Language)
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Some features

● vcd dump
● ghw waveform dump

– Support all VHDL types
– Can be read by gtkwave

● VPI interface
– To support cocotb

● VHPIDIRECT
– Call C functions from VHDL
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What is GHDL?

● Works on virtually any design
– Option ‘-frelaxed’ to be compatible with bugs 

or deviations of commercial simulators
– Rares issues concerning < 2008 standards
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New: language server
● Analyze your file on every key stroke (fast enough)
● Very useful to improve error recovery
● Very valuable to navigate
● Written in python, using libghdl
● Many features could be added!
● VS Code and emacs extensions
● https://github.com/ghdl/ghdl-language-server

https://github.com/ghdl/ghdl-language-server
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GHDL – Synthesis 
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Recent development: Synthesis

● Synthesis was the most requested feature
– Not as github issues, but during informal talks
– Pushed by open HW projects

● Missing block in FOSS EDA
● Support of PSL for formal proofs.
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GHDL synth

● Standalone
$ ghdl --synth  FILES  -e TOP

– VHDL design to a simpler VHDL netlist
– To check if your design could be synthesized
– For regression tests
– Can output VHDL or Verilog
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GHDL synth – Yosys plugin

● As a Yosys plugin, provide a new command
yosys>  ghdl FILES  -e TOP

– Import a VHDL design as a netlist
– Then the normal flow can be used
– The most common usage!

● https://github.com/ghdl/ghdl-yosys-plugin

https://github.com/ghdl/ghdl-yosys-plugin
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GHDL Synthesis

● It’s a front-end
– Does not perform optimizations, done by ABC/

Yosys
● Can already handle large designs

– Retro-uC (z80 + 6502)
– Microwatt (PowerPc cpu)
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Synthesis: improvements (1/2)

● Memory inference
– Handle multi-port memories
– Multi-clock

● Verilog interoperability in Yosys
– Can instantiate a blackbox
– Can instantiate a Verilog Module

● (Need to deal with parameters)
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Synthesis: improvements (2/2)

● VHDL 2008
– Partial
– Package with generics

● Improve error messages
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What is synthesis ?
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For research

● Netlist optimization, netlist mapping

– That’s very important
– But you need a netlist to start from…

● ghdl --synth is about netlist generation
– No logic optimization
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Netlist generation

● Partial evaluation
● Going functional
● Inference
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Partial evaluation
● The size of all the objects must be known

– Bus width
– Register size
– Memory size

● Evaluation is needed
– at compile-time
– during elaboration
– during synthesis

● Partial evaluation is not a simple problem
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Partial evaluation - examples
constant N : natural := 64;  --  Value is obvious 

signal Addr : std_logic_vector (1 to W);

signal s2 : std_logic_vector (N – 1 downto 0);

variable V : natural;
…
V := to_integer(unsigned (Addr));
…
V := 0;
V := V + 1;

constant W : natural := log2 (N);
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Partial evaluation – ghdl rules
● A signal is never constant
● A variable is constant when wholly assigned to a 

constant value
● A function is expected to return a constant value 

if called only with constant arguments.

● But another synthesizer may have different 
rules.
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Going functional
● Expressions can be naturally synthesized

– Or, and, not, +, - …
● A synthesizer needs to remove the assignments

– In particular the sequential assignments
● It’s like transforming your HDL into a function
● Use standard technics

– VN (value numbering)
– SSA (Static Single Assignment)
– Loop unrolling
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Going functional - examples
V := V0;
if Cond = ’1’ then
  V := V1;
end if;

V := Cond ? V1 : V0;

if Cond = ’1’ then
  V := V1;
else
  V := V0;
end if;

V := Cond ? V1 : V0;

for I in 1 to 5 loop
  Stmts;
end loop;

I := 1;
Stmts;
I := 2;
...
I := 5;
Stmts;
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Inference
● A design is rarely fully functional

– As a design is rarely only combinational
● There are storage elements

– DFF, memories, latches…
● Internally they appear as violations of functional 

rules
– And then a storage element is inferred

● Storage element: keep its previous value
– A combinational loop
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Inference - example

if rising_edge (clk) then
  S <= F (S, A)
end if;

S <= rising_edge (clk) ? F (S, A) : S;

Loop!

S <= DFF (clk, F (S, A));

And edge detection
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DFF Inference
● Logical loop
● Path from the signal to itself
● Edge detection

– Signal modified only on an edge
● (Latch if no edge)
● Possible async set/reset
● No special handling for sync set/reset

– Normal logic
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Memory Inference
● A little bit like DFF
● But the target is partially updated

– At a non-static offset
– Disjoint offsets

● Also partially read
– Same criteria

● No reset
● Initial value (ROM or initialized RAM)



  28 / 42

Memory Inference
● Multiple ports

– With priority/order
● Multiple implementations

– One process
– Multiple processes (shared variable)

● Synch or Async read
● (Usually write is synchronous)
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Memory Inference
● Different ports width
● Write enable
● Byte enable
● Single clock, dual/many clocks
● Content described by a record
● Memory within a record
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Conclusion
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Future
● Improve  support of Verilog

– Instantiation of Verilog modules in VHDL
– Instantiation of VHDL entities in Verilog

● Improve memory inference
● Few ieee.numeric_std functions to implement
● What about ieee.numeric_bit

– Unused ?
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Backup: Extra Ideas
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Work to be done...

● VHDL-SystemVerilog mixed simulators/synthesis
● IDE / Debuggers
● Project file format
● Schematic viewer
● Encrypted IPs/Cores/Blocks
● Coverage
● Constrained random verification
● AMS
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VHDL + SystemVerilog simul  (1)

● Many designs use both VHDL + (System)Verilog
– At least for VHDL designs

● There are FOSS simulators for both languages
● But none that can handle both at the same time
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VHDL + SystemVerilog simul  (2)

● Handling just the synthesis part is simple
– icarus could do it for simple designs
– yosys could generate c/c++ simulation code
– Adding GHDL front-end to Verilator should not 

be a lot of work
● But what about full language support ?
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VHDL + SystemVerilog simul  (3)

● Starting point ?
● Which FOSS SystemVerilog simulator ?

– There are many!
– None of them is complete

● (For VHDL, I have the answer!)
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IDE + Debugger
● It would be nice to have an interactive debugger

– Waveforms
– Breakpoints
– Forcing signals
– Variable inspection

● It is possible to use gdb with GHDL, but it’s a 
difficult experience...
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Project file format (1)
● A design has several files
● For synthesis or simulation, you need to provide 

the list of files
– Plus general options, per file options…

● Each tool has its own project file format
● There are some project manager FOSS:

– FuseSoC
– hdlmake
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Schematic viewer
● Current state of the art: graph + viewer

– Graphviz
– ELK/ELKjs
– D3.js
– …

● Only flatten designs ?
● Doesn’t scale well
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Encrypted IPs
● Some FPGA vendors provide their IP simulation 

models through encrypted HDL.
● Use IEEE1735
● Support commercial simulators
● What about FOSS ?
● Is there a possible solution ?
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Constrained Random Verification
● Strong argument from SystemVerilog
● Are there any FOSS implementation ?
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AMS
● Analog Mixed Simulation

– Like spice + logic + multi-domains
● Existing standards:

– VHDL-AMS
– Verilog-AMS

● Niche market ?
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