
 1 / 42

Synthesis with GHDL

FSiC 2022, Tristan Gingold

 2 / 42

GHDL as a simulator

 3 / 42

What is GHDL ?

● A VHDL simulator
● Command line tool

https://github.com/ghdl/ghdl

● Open source (GPLv2)
● Binaries for Linux (x86/x86-64), Windows, Mac

https://github.com/ghdl/ghdl

 4 / 42

1 slide demo

entity hello is
end hello;

architecture behav of hello is
begin
 assert false
 report "Hello VHDL world" severity note;
end behav;

$ ghdl -a hello.vhdl # analysis
$ ghdl -e hello # elaboration
$ ghdl -r hello # simulation
hello.vhdl:6:3:@0ms:(assertion note): Hello VHDL world

hello.vhdl

 5 / 42

Main features

● Compiled (gcc, llvm or internal back-ends)

● Full support of 87, 93, and 02 standards
● 08 standard mostly supported
● PSL (Property Specification Language)

 6 / 42

Some features

● vcd dump
● ghw waveform dump

– Support all VHDL types
– Can be read by gtkwave

● VPI interface
– To support cocotb

● VHPIDIRECT
– Call C functions from VHDL

 7 / 42

What is GHDL?

● Works on virtually any design
– Option ‘-frelaxed’ to be compatible with bugs

or deviations of commercial simulators
– Rares issues concerning < 2008 standards

 8 / 42

New: language server
● Analyze your file on every key stroke (fast enough)
● Very useful to improve error recovery
● Very valuable to navigate
● Written in python, using libghdl
● Many features could be added!
● VS Code and emacs extensions
● https://github.com/ghdl/ghdl-language-server

https://github.com/ghdl/ghdl-language-server

 9 / 42

GHDL – Synthesis

 10 / 42

Recent development: Synthesis

● Synthesis was the most requested feature
– Not as github issues, but during informal talks
– Pushed by open HW projects

● Missing block in FOSS EDA
● Support of PSL for formal proofs.

 11 / 42

GHDL synth

● Standalone
$ ghdl --synth FILES -e TOP

– VHDL design to a simpler VHDL netlist
– To check if your design could be synthesized
– For regression tests
– Can output VHDL or Verilog

 12 / 42

GHDL synth – Yosys plugin

● As a Yosys plugin, provide a new command
yosys> ghdl FILES -e TOP

– Import a VHDL design as a netlist
– Then the normal flow can be used
– The most common usage!

● https://github.com/ghdl/ghdl-yosys-plugin

https://github.com/ghdl/ghdl-yosys-plugin

 13 / 42

GHDL Synthesis

● It’s a front-end
– Does not perform optimizations, done by ABC/

Yosys
● Can already handle large designs

– Retro-uC (z80 + 6502)
– Microwatt (PowerPc cpu)

 14 / 42

Synthesis: improvements (1/2)

● Memory inference
– Handle multi-port memories
– Multi-clock

● Verilog interoperability in Yosys
– Can instantiate a blackbox
– Can instantiate a Verilog Module

● (Need to deal with parameters)

 15 / 42

Synthesis: improvements (2/2)

● VHDL 2008
– Partial
– Package with generics

● Improve error messages

 16 / 42

What is synthesis ?

 17 / 42

For research

● Netlist optimization, netlist mapping

– That’s very important
– But you need a netlist to start from…

● ghdl --synth is about netlist generation
– No logic optimization

 18 / 42

Netlist generation

● Partial evaluation
● Going functional
● Inference

 19 / 42

Partial evaluation
● The size of all the objects must be known

– Bus width
– Register size
– Memory size

● Evaluation is needed
– at compile-time
– during elaboration
– during synthesis

● Partial evaluation is not a simple problem

 20 / 42

Partial evaluation - examples
constant N : natural := 64; -- Value is obvious

signal Addr : std_logic_vector (1 to W);

signal s2 : std_logic_vector (N – 1 downto 0);

variable V : natural;
…
V := to_integer(unsigned (Addr));
…
V := 0;
V := V + 1;

constant W : natural := log2 (N);

 21 / 42

Partial evaluation – ghdl rules
● A signal is never constant
● A variable is constant when wholly assigned to a

constant value
● A function is expected to return a constant value

if called only with constant arguments.

● But another synthesizer may have different
rules.

 22 / 42

Going functional
● Expressions can be naturally synthesized

– Or, and, not, +, - …
● A synthesizer needs to remove the assignments

– In particular the sequential assignments
● It’s like transforming your HDL into a function
● Use standard technics

– VN (value numbering)
– SSA (Static Single Assignment)
– Loop unrolling

 23 / 42

Going functional - examples
V := V0;
if Cond = ’1’ then
 V := V1;
end if;

V := Cond ? V1 : V0;

if Cond = ’1’ then
 V := V1;
else
 V := V0;
end if;

V := Cond ? V1 : V0;

for I in 1 to 5 loop
 Stmts;
end loop;

I := 1;
Stmts;
I := 2;
...
I := 5;
Stmts;

 24 / 42

Inference
● A design is rarely fully functional

– As a design is rarely only combinational
● There are storage elements

– DFF, memories, latches…
● Internally they appear as violations of functional

rules
– And then a storage element is inferred

● Storage element: keep its previous value
– A combinational loop

 25 / 42

Inference - example

if rising_edge (clk) then
 S <= F (S, A)
end if;

S <= rising_edge (clk) ? F (S, A) : S;

Loop!

S <= DFF (clk, F (S, A));

And edge detection

 26 / 42

DFF Inference
● Logical loop
● Path from the signal to itself
● Edge detection

– Signal modified only on an edge
● (Latch if no edge)
● Possible async set/reset
● No special handling for sync set/reset

– Normal logic

 27 / 42

Memory Inference
● A little bit like DFF
● But the target is partially updated

– At a non-static offset
– Disjoint offsets

● Also partially read
– Same criteria

● No reset
● Initial value (ROM or initialized RAM)

 28 / 42

Memory Inference
● Multiple ports

– With priority/order
● Multiple implementations

– One process
– Multiple processes (shared variable)

● Synch or Async read
● (Usually write is synchronous)

 29 / 42

Memory Inference
● Different ports width
● Write enable
● Byte enable
● Single clock, dual/many clocks
● Content described by a record
● Memory within a record

 30 / 42

Conclusion

 31 / 42

Future
● Improve support of Verilog

– Instantiation of Verilog modules in VHDL
– Instantiation of VHDL entities in Verilog

● Improve memory inference
● Few ieee.numeric_std functions to implement
● What about ieee.numeric_bit

– Unused ?

 32 / 42

Backup: Extra Ideas

 33 / 42

Work to be done...

● VHDL-SystemVerilog mixed simulators/synthesis
● IDE / Debuggers
● Project file format
● Schematic viewer
● Encrypted IPs/Cores/Blocks
● Coverage
● Constrained random verification
● AMS

 34 / 42

VHDL + SystemVerilog simul (1)

● Many designs use both VHDL + (System)Verilog
– At least for VHDL designs

● There are FOSS simulators for both languages
● But none that can handle both at the same time

 35 / 42

VHDL + SystemVerilog simul (2)

● Handling just the synthesis part is simple
– icarus could do it for simple designs
– yosys could generate c/c++ simulation code
– Adding GHDL front-end to Verilator should not

be a lot of work
● But what about full language support ?

 36 / 42

VHDL + SystemVerilog simul (3)

● Starting point ?
● Which FOSS SystemVerilog simulator ?

– There are many!
– None of them is complete

● (For VHDL, I have the answer!)

 37 / 42

IDE + Debugger
● It would be nice to have an interactive debugger

– Waveforms
– Breakpoints
– Forcing signals
– Variable inspection

● It is possible to use gdb with GHDL, but it’s a
difficult experience...

 38 / 42

Project file format (1)
● A design has several files
● For synthesis or simulation, you need to provide

the list of files
– Plus general options, per file options…

● Each tool has its own project file format
● There are some project manager FOSS:

– FuseSoC
– hdlmake

 39 / 42

Schematic viewer
● Current state of the art: graph + viewer

– Graphviz
– ELK/ELKjs
– D3.js
– …

● Only flatten designs ?
● Doesn’t scale well

 40 / 42

Encrypted IPs
● Some FPGA vendors provide their IP simulation

models through encrypted HDL.
● Use IEEE1735
● Support commercial simulators
● What about FOSS ?
● Is there a possible solution ?

 41 / 42

Constrained Random Verification
● Strong argument from SystemVerilog
● Are there any FOSS implementation ?

 42 / 42

AMS
● Analog Mixed Simulation

– Like spice + logic + multi-domains
● Existing standards:

– VHDL-AMS
– Verilog-AMS

● Niche market ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

