
Mixing software abstractions
for high-level FPGA programming

Loïc Sylvestre1 – Sorbonne Université, Lip6, IRILL

July 10, 2023 – FSiC 2023

1Doctoral candidate under the supervision of Pr. Emmanuel Chailloux
(Sorbonne Université) & Pr. Jocelyn Sérot (Université Clermont Auvergne)

1 / 12



Experiments in FPGA programming
Field Programmable Gate Array (FPGA)
▸ reconfigurable architecture
▸ to emulate custom hardware designs

Design and implementation of programming languages
▸ on FPGA targets
▸ by compilation to hardware descriptions

● at the Register Transfer Level (RTL)
▸ implementation of high level programming features

● like dynamic data structures
with automatic memory management

▸ dedicated language constructs
● to exploit fine-grained parallelism
● to interact with the FPGA environment

2 / 12



OCaml on FPGA
▸ OCaml (https://ocaml.org): multi-paradigm programming

language, free & open-source, developed by INRIA,
2023 ACM SIGPLAN Programming Language Software Award

▸ O2B: implementation of the OCaml Virtual Machine on a soft
processor (based on OMicroB2 which targets microcontrollers)

▸ Macle: compiler for a subset of OCaml to RTL

https://github.com/jserot/O2B
https://github.com/lsylvestre/macle

2https://github.com/stevenvar/OMicroB
3 / 12

https://ocaml.org
https://github.com/jserot/O2B
https://github.com/lsylvestre/macle
https://github.com/stevenvar/OMicroB


An OCaml program on FPGA
1 (* each “circuit” is an OCaml function to be compiled to RTL with Macle *)
2 circuit max(a,b) =
3 if a > b then a else b ;;
4
5 circuit collatz(n) =
6 let rec loop(n,t) = (* inner tail-recursive function “loop” *)
7 if n == 1 then t else
8 if n mod 2 == 0 then
9 loop(n/2,t+1)

10 else loop(3*n+1,t+1)
11 in loop(n,1) ;;
12
13 (* “host” code compiled to bytecode and executed by O2B *)
14 let main() =
15 let x = ref 0 in
16 for i = 1 to 100 do (* sequential execution *)
17 x := max(!x, collatz(i))
18 done ;;
19
20 main() ;;

4 / 12



Compiling tail-recursion

circuit collatz(n) =
let rec loop(n,t) =

if n == 1 then t else
if n mod 2 == 0 then

loop(n/2,t+1)
else loop(3*n+1,t+1)

in loop(n,1)

start loop

end

tick.true
n∶=x,t∶=1

tick.n=1
result∶=ttick.n/=1.n mod 2=0

n∶=n/2,t∶=t+1

tick.n/=1.n mod 2/=0
n∶=3∗n+1,t∶=t+1

▸ no need for a call stack
▸ translation to Finite State Machine (FSM) at the RT level
▸ each tail-call is a “pause” until the next clock tick
▸ parameter passing corresponds to variable assignment
▸ current work: sharing of non simultaneous functions calls, like:

let x = collatz(n) in collatz(x)

5 / 12



A faster OCaml program on FPGA
1 (* OCaml functions compiled to RTL with Macle *)
2 circuit max(a,b) = ... ;;
3
4 circuit collatz(n) = ... ;;
5
6 circuit max_collatz(n,m) =
7 let a = collatz(n) (* runs collatz(n) and collatz(m) in parallel *)
8 and b = collatz(m) in
9 (* synchronization *)

10 max(a,b)
11
12 (* “host” code executed by O2B *)
13 let main() =
14 let x = ref 0 in
15 for i = 1 to 50 do (* sequential execution *)
16 x := max (!x, max_collatz (i*2, i*2+1))
17 done ;;
18
19 main() ;;

6 / 12



Memory accesses from the accelerated code
▸ the generated RTL code can perform bus requests to access

the external memory, in which OCaml values are allocated

1 (* OCaml functions compiled to RTL with Macle *)
2 circuit collatz(n) = ... ;;
3
4 circuit map_collatz(a) = (* “circuit” accessing shared memory *)
5 for i = 0 to array_length a - 1 do (* sequential execution *)
6 a.(i) <- collatz(a.(i)) (* uses only one instance of “collatz” *)
7 done ;;
8
9 (* “host” code executed by O2B *)

10 let main() =
11 let a = Array.init 1024 (fun i -> i+1) in (* dynamic allocation *)
12 map_collatz(a) ;;
13
14 main() ;;

▸ currently, no dynamic allocation from the accelerated code

7 / 12



Parallel skeletons
▸ exploit fine-grained parallelism
▸ concisely express (simple) parallel algorithms
▸ optimize memory transfer

1 (* OCaml functions compiled to RTL with Macle *)
2 circuit collatz(n) = ... ;;
3
4 circuit map_collatz(a) = (* “circuit” accessing shared memory *)
5 (* uses 32 instances of “collatz” in parallel *)
6 (* optimizes bus transfers using a 32-place buffer *)
7 array_map<32> collatz a
8
9 (* “host” code executed by O2B *)

10 let main() =
11 let a = Array.init 1024 (fun i -> i+1) in (* dynamic allocation *)
12 map_collatz(a) ;;
13
14 main() ;;

8 / 12



Current approach: reversing the roles

▸ compiling a cycle-accurate language to RTL
● following a synchronous reactive approach (à la Lustre)
● execution as sequence of logic steps (or clock ticks)
● to program interaction with I/Os as instantaneous

functions (i.e., functions responding before the next tick)
▸ all language constructs react instantaneously, except :

● tail-recursive function call (one clock tick)
● asynchronous primitive call (several ticks)

▸ allows expressing both instantaneous and non-instantaneous
functions, i.e., interaction and computation

▸ providing (asynchronous) memory primitives
▸ could use a softcore processor

with automatic memory management

9 / 12



Instantaneous vs non-instantaneous functions
▸ Instantaneous functions (of type τ ⇒ τ ′)

1 let half_add(a,b) =
2 (a xor b, a & b)
3 val half_add : bool * bool⇒ bool
4
5 let full_add(a,b,c) =
6 let (s1, c1) = half_add(a,b) in
7 let (s, c2) = half_add(c, s1) b in
8 (s, c1 or c2)
9 val full_add : bool * bool * bool⇒ bool

▸ Non-instantaneous functions (of type τ → τ ′)
1 let collatz(n) =
2 let rec loop(n,t) = (* inner tail-recursive function “loop” *)
3 if n == 1 then t else
4 if n mod 2 == 0 then loop(n/2,t+1)
5 else loop(3*n+1,t+1) (* each call to loop pauses for on tick *)
6 in loop(n,1) ;;
7 val collatz : int→ int

10 / 12



Mixing interaction and computation

Stateful instantaneous functions (à la Lustre)
1 (* sustains value true as soon as input a is true until reset *)
2 let aro(a,reset) =
3 let step(s) = (s or a) & not reset in
4 reg step last false
5 val edge : bool * bool⇒ bool

Asynchronous calls from instantaneous functions
1 (* sustains value true as soon as input a is true
2 until collatz(n) returns a value v higher than tmax *)
3 let main(a,n,tmax) =
4 let v,rdy = exec collatz(n) default 0 in
5 let reset = rdy & (v > tmax) in
6 aro(a,reset)
7 val main : bool * int * int⇒ bool

11 / 12



Conclusion

▸ using FPGAs to implement programming languages
▸ “programming language” approach to better program FPGAs

● formal synchronous semantics ↝ cycle accuracy
● general-purpose programming: asynchronous calls +

shared memory + runtime system
▸ mixing interaction and computation
▸ to program reactive embedded applications on FPGA
▸ current experiment on small FPGAs:

● OrangeCrab3 with the Yosys open synthesis suite4

● Intel Max 10 on the DE10-Lite board
▸ simulation with GHDL5 & GTKWave6

3https://orangecrab-fpga.github.io/orangecrab-hardware
4https://github.com/YosysHQ/yosys
5https://github.com/ghdl
6https://github.com/gtkwave

12 / 12

https://orangecrab-fpga.github.io/orangecrab-hardware
https://github.com/YosysHQ/yosys
https://github.com/ghdl
https://github.com/gtkwave

