Whom do you trust?

Validating process parameters for open-source tools

Tim Edwards
SVP Analog \& Platform

efabless:
 efabless
 efabless.com

Open Circuit Design opencircuitdesign.com

Open-source PDKs are a collaborative effort!

 SkyWater sky 130 open PDK skywatertechnology.com

OpenROAD
theopenroadproject.org

efabless
efabless.com

Github github.com

Google
 Google google.com

. . . and many others!

Overview of parasitic capacitance

Parallel plate area capacitance:

Simple physics!
$\mathrm{C}=\mathrm{C}_{\text {area }} \times$ area
$C_{\text {area }}=\frac{\varepsilon_{\mathrm{Si}} \cdot \mathrm{K}}{\mathrm{d}}\left(\mathrm{F} / \mu \mathrm{m}^{2}\right)$

Overview of parasitic capacitance

Parallel plate fringe capacitance:

Not simple physics at all!

However, total fringe can be computed as

$$
C=C_{\text {perim }} \times \text { perim } \quad \text { perim }=21 \times 2 w
$$

$\mathrm{C}_{\text {perim }}=($ some ridiculously complicated expression) $(\mathrm{F} / \mu \mathrm{m})$

Overview of parasitic capacitance

One (of many) analytic models of fringe capacitance:

wire width w , thickness t , height d above substrate
model as wire width ($w-t$) plus two half-cylinders diameter t
calculate area capacitance on (shortened) wire and add to result for cylinder:
$C=K \varepsilon_{\mathrm{si}}(\mathrm{w}-\mathrm{t}) / \mathrm{d}+2 \pi \varepsilon_{\mathrm{Si}} / \log (\mathrm{d} / \mathrm{t})$
(C is per unit length, $F / \mu m$)
Note that this result is a total capacitance and does not say how it is distributed over distance from a wire. It can be used to estimate the maximum fringe capacitance.

Overview of parasitic capacitance

Analytic fringe parasitic capacitance, Calibre style

cases:

 overlap, underlap same net, different net.```
CAPACITANCE CROSSOVER FRINGE MET1_cond MASK Substrate
 if ((distance() > 0.0) && (same_net() == 0)) {
 C = length() * 0.176651
 * (1- exp(-0.418008 * (distance() + 0.358863)))
 * pow(width() , 0.0106984 * distance() + -0.00163982)
 * (0.0623825 * thickness() + 0.205178)
 * m34IN_COEF
 * (1 - m34RS * exp((-m43ink1 * radius_down()) / (m43ink2 * distance() + m43ink3 * 1.3761)))
 * (1 - m34RS * exp((-m43ink4 * radius_up()) / (m43ink5 * distance() + m43ink6 * 1.3761)))
 }f ((distance() > 0.0) && (same_net() == 1)) {
 C = length() * 0.0365238
 * (1 - exp(-0.471613 * (distance() + 0.142079)))
 * m34IN COEF
 * (1 - m34RS * exp((-m43ink1 * radius_down()) / (m43ink2 * distance() + m43ink3 * 1.3761)))
 * (1 - m34RS * exp((-m43ink4 * radius_up()) / (m43ink5 * distance() + m43ink6 * 1.3761)))
 }
 if (distance() <= 0.0) {
 C = length() * 0.157414
 * pow(width() , 0.0968796)
 * (0.100672 * thickness() + 0.236357)
 * m34INO_COEF
 * (1 - m34RS * exp((-m43ink1 * radius_down()) / (m43ink2 * 7 + m43ink3 * 1.3761)))
 * (1 - m34RS * exp((-m43ink4 * radius_up()) / (m43ink5 * 7 + m43ink6 * 1.3761)))
 }
]
```


## Overview of parasitic capacitance

## Sidewall capacitance:

Seems like simple physics. . .
$\mathrm{C}=\mathrm{C}_{\text {coup }} \times$ sidewall area

$$
=C_{\text {coup }} \times I \times t
$$

$C_{\text {coup }}=\frac{\varepsilon_{\mathrm{Si}} \cdot \mathrm{K}}{\mathrm{s}}\left(\mathrm{F} / \mu \mathrm{m}^{2}\right)$
. . . but it's not.

(Normally $t$ is multiplied into the coefficient which then has units $F / \mu \mathrm{m}$ )
( $\mathrm{C}_{\text {coup }}$ can be given as a constant coefficient if referenced to $\mathrm{s}=1$ )

## Overview of parasitic capacitance



## Overview of parasitic capacitance

Overlap fringe capacitance goes both ways (and is not symmetric)!

$\mathrm{C}_{\text {perim }}=($ some ridiculously complicated expression) $(\mathrm{F} / \mu \mathrm{m})$

## Overview of parasitic capacitance

Major effects:
Vertical shielding (area and fringe)

metal1 shields part of metal2 from the substrate

## Overview of parasitic capacitance

Major effects:
Lateral sidewall shielding

Shape B blocks shape C from sidewall coupling to shape A

## Overview of parasitic capacitance

Major effects:
Lateral fringe shielding

Presence of shape A blocks shape B's fringe capacitance to substrate, and vice versa.


## Parasitic capacitance extraction in Magic

Magic's parasitic extraction (up to version 8.3.277)

Computes:
area capacitance
fringe capacitance
sidewall capacitance
overlap area and fringe capacitance hierarchical contribution of subcells


All fringe capacitance calculated as if it is applied on an infinitesmally thin line along the edge.

## Parasitic capacitance extraction in Magic

Magic's parasitic extraction (since version 8.3.309)

Fringe capacitance distributed over area out to the fringe halo distance.


## Parasitic capacitance extraction in Magic



## Parasitic capacitance extraction in Magic



## Parasitic capacitance extraction in Magic

Magic's parasitic extraction
(up to version 8.3.277)


## Parasitic capacitance extraction in Magic

Magic's parasitic extraction
(since version 8.3.309)
Magic now scans every edge from end to end and finds the nearest neighbor opposing edge, recursively breaking


## Parasitic capacitance extraction in Magic

Magic's parasitic extraction (since version 8.3.309)


Fringe shielding computed as:
Fraction of fringe field unshielded $=\sin ((\pi / 2) \cdot$ sep $/$ halo

## Cross-validation

Foundry measured data, in SPICE format:
condition: p1 (poly) over field oxide (f) line width line spacing


## Cross-validation

## Field equation solver: FasterCap (2D)

```
2D - metal2 to field substrate
Indicates a metal of width 0.14um with adjacent metal2 wire at 0.14um distance
For this configuration, wire centers wre separated by mith at
According to cap tables, the sidewall capacitance is 1.05e-10 pF/um.
Dielectric stack pulled from diagram at:
Https://skywater-pdk.readthedocs.io/en/main/rules/assumptions.html\
#process-stack-diagram
* TOPNIT to air
* k_boundary 1.0
* NILD6 to TOPNIT
D K_boundary 7.5
0 k boundary 4.0.4.1 0.0 4.0211 0.0
* K_boundary 4.0 4.1
l k_boundary 4.1 4.2 0.0
* NILD3 to NILD4
D k_boundary
 * NILD4_C
* Metal 2 right shield endcap
ll
ll
ll
* Metal 2 left shield endcaps
ll
MK_endcap_lft 3.5 4.5 1.2 1.26 2.0061
D k_endcap_lft 3.5
llllllll
C metal2_top 4.2 -0.14 2.0061
C metal2_bot 4.5 -0.14 2.0061
Metal 2 right
Cmetal2_top 4.2
metal2_bot 4.5 4.5
l k_boundary 4.5 4.05 0.0
* LINT to NILD2
* FOX/PST to LINT $.3 0.0 1.0111
llllllll
Substrate (ground plane)
End
```

```
File gnd_plane
* ground plane
S ground -10.0 0.0 10.0 0
S grou
File k_boundary
* dielectric boundary
S plane -10.0 0.0 10.0 0
End
File k_endcap_rbt
** dielectric boundary
S plane 0.07 0.0 0.10 0.0
End
File k_endcap_rgt
0 dielectric boundary
S plane 0.07 0.36 0.10 0.36
S plane 0.10}00.00.100.3
End
File k_endcap_lbt
0 dielectric boundary
S Slane -0.07 0.0
End
File k_endcap_lft
0 dielectric boundary
S plane -0.07 0.36
S plane -0.10 0.0 -0.10 0.36
End
File metal2_top
0 metal2 0.14um wide top
S metal2 -0.07 0.0
End
File metal2_bot
F metal2 0.14um wide bottom
llllll}\begin{array}{llll}{\mathrm{ S metal2 }}&{-0.07}&{0.0}&{0.07}\\{\mathrm{ End}}
```


## Cross-validation

FasterCap 2D geometry for mcm2f_cc_w_0_140_s_0_140 (SkyWater sky130A stackup)


## Cross-validation

## FasterCap 2D results

```
Weighted Frobenius norm of the difference between capacitance (auto option): 0.000907436
Solve statistics
Number of input panels: 25 of which 5 conductors and 20 dielectric
Number of input panels to solver engine: 25
Number of panels after refinement: 284
Number of potential estimates: 6872
Number of links: 9638 (uncompressed 80656, compression ratio is 88.1\%)
Max recursion level: 11
Max Mesh relative refinement value: 0.192763
Iteration time: 0.079057 s (0 days, 0 hours, 0 mins, 0 s)
Iteration allocated memory: 16666 kilobytes
Total allocated memory: 16666 kilobytes
Total time: 0.027655 s (0 days, 0 hours, 0 mins, 0 s)

Measured data says sidewall cap is \(107 \mathrm{aF} / \mu \mathrm{m}\), though. . .

\section*{Cross-validation}

Generate coefficient data for Magic from curve-fitting vendor data Using Octave least-mean-squares function in the optim package:

Sidewall capacitance:

Vendor data fit to C = \(\mathrm{C}_{\text {coup }}\) (1.0 / (sep + offset))
\(\mathrm{C}_{\text {coup }}=50.5 \mathrm{aF} / \mu \mathrm{m}\) offset \(=\underline{0.313 \mu \mathrm{~m}}\)

Fringe shielding:

Vendor data fit to \(\mathrm{C}=\mathrm{C}_{\text {fringe }} \sin ((\pi / 2)(\) sep \(/\) halo \())\)
\(\mathrm{C}_{\text {fringe }}=22.2 \mathrm{aF} / \mu \mathrm{m} \quad\) halo \(=4.17 \mu \mathrm{~m}\)

\section*{Applications}

\section*{OpenROAD OpenRCX calibration}

Example of pattern file generated by OpenRCX for calibration
Magic extracted result can be converted to SPEF because structures are simple and follow strict naming conventions.

\section*{Applications}

\section*{OpenROAD OpenRCX calibration}

OpenRCX calibration file generated from SPEF data derived from extraction by Magic

Then use OpenSTA to calculate delay data on a digital design and compare to results obtained by other methods (commercial tools, technology LEF data).

\section*{Conclusions and Future Work}

Whom do I trust?
I don't trust anyone completely!
Challenges:
Data in proprietary or non-human-readable formats
Human-readable formats following arbitrary standards, with no documentation Incomplete and/or erroneous vendor-provided data

Future work:
Get measured data from silicon
Automate curve-fitting for sky 130 data
More investigation of models used for parasitics in Magic
Implementation of more \(n\)-th order effects in Magic```

