
Software-Defined Hardware: Digital Design in
the 21st Century with Chisel

Martin Schoeberl

Technical University of Denmark

July 9, 2023

1 / 46



Motivating Example:
Lipsi: Probably the Smallest Processor in the World

▶ Tiny processor
▶ Simple instruction set
▶ Shall be small

▶ Around 200 logic cells, one FPGA memory block
▶ Hardware described in Chisel
▶ Available at https://github.com/schoeberl/lipsi
▶ Usage

▶ Utility processor for small stuff
▶ In teaching for introduction to computer architecture

▶ The design took place on the island Lipsi

2 / 46

https://github.com/schoeberl/lipsi


The Design of Lipsi on Lipsi

3 / 46



Lipsi Implementation

▶ Hardware described in Chisel
▶ Tester in Chisel
▶ Assembler in Scala

▶ Core case statement about 20 lines
▶ Reference design of Lipsi as software simulator in Scala
▶ Testing:

▶ Self testing assembler programs
▶ Comparing hardware with a software simulator

▶ All in a single programming language!
▶ All in a single program
▶ How much work is this?

4 / 46



Chisel is Productive

▶ All coded and tested in less than 14 hours!

▶ The hardware in Chisel
▶ Assembler in Scala
▶ Some assembler programs (blinking LED)
▶ Simulation in Scala
▶ Two testers

▶ BUT, this does not include the design (done on paper)

5 / 46



Motivating Example: Lipsi, a Tiny Processor

▶ Show in IntelliJ

6 / 46



More on Chisel Success Stories

▶ Before the lockdown at CCC 2020 (in silicon valley)
▶ 90 participants
▶ More than 30 different (hardware) companies present
▶ Several companies are looking into Chisel
▶ IBM did an open-source PowerPC
▶ SiFive is a RISC-V startup success

▶ High productivity with Chisel
▶ Open-source Rocket chip

▶ Experanto uses the BOOM processor in Chisel
▶ Google did a machine learning processor
▶ Intel is looking at Chisel
▶ Chisel is open-source, if there is a bug you can fix it

▶ You can contribute to the Chisel ecosystem

7 / 46

https://www.sifive.com/


Goals for this Intro

▶ Get an idea what Chisel is
▶ Will show you code snippets

▶ A first high level view of the main features of Chisel
▶ Reconsider how to describe hardware
▶ Some experience report from usage at DTU
▶ Pointers to more information

8 / 46



Chisel

▶ A hardware construction language
▶ Constructing Hardware In a Scala Embedded Language
▶ If it compiles, it is synthesisable hardware
▶ Say goodby to your unintended latches

▶ Chisel is not a high-level synthesis language
▶ Single source two targets

▶ Cycle accurate simulation (testing)
▶ Verilog for synthesis

▶ Embedded in Scala
▶ Full power of Scala available
▶ But to start with, no Scala knowledge needed

▶ Developed at UC Berkeley
▶ Drives the Rocket chip (open-source RISC-V)

9 / 46



The C Language Family

C

Verilog

SystemVerilog

C++

SystemC

Java

Scala

Chisel

C#

10 / 46



Other Language Families

Algol

Ada

VHDL

Python

MyHDL

11 / 46



Some Notes on Scala

▶ Object oriented
▶ Functional
▶ Strongly typed

▶ With very good type inference
▶ Could be seen as Java++
▶ Compiled to the JVM
▶ Good Java interoperability

▶ Many libraries available

12 / 46



Chisel vs. Scala

▶ A Chisel hardware description is a Scala program
▶ Chisel is a Scala library
▶ When the program is executed it generates hardware
▶ Chisel is a so-called embedded domain-specific language

13 / 46



A Small Language

▶ Chisel is a small language
▶ On purpose
▶ Not many constructs to remember
▶ The Chisel Cheatsheet fits on two pages
▶ The power comes with Scala for circuit generators
▶ With Scala, Chisel can grow with you

14 / 46

https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf


Expressions are Combinational Circuits

(a | b) & ˜(c ˆ d)

val addVal = a + b

val orVal = a | b

val boolVal = a >= b

▶ The usual operations
▶ Simple name assignment with val
▶ Width inference
▶ Type inference
▶ Types: Bits, UInt, SInt, Bool

15 / 46



Conditional Updates for Combinational Circuits

val w = Wire(UInt())

when (cond) {

w := 1.U

} .elsewhen (cond2) {

w := 2.U

} .otherwise {

w := 3.U

}

▶ Similar to VHDL process or SystemVerilog always comb
▶ Chisel checks for complete assignments in all branches
▶ Latches give compile error

16 / 46



Registers

val cntReg = RegInit(0.U(32.W))

cntReg := cntReg + 1.U

▶ Type inferred by initial value (= reset value)
▶ No need to specify a clock or reset signal

▶ Also definition with an input signal connected:

val r = RegNext(nextVal)

17 / 46



Functional Abstraction

def addSub(add: Bool, a: UInt, b: UInt) =

Mux(add, a+b, a-b)

val res = addSub(cond, a, b)

def rising(d: Bool) = d && !RegNext(d)

▶ Functions for repeated pieces of logic
▶ May contain state
▶ Functions may return hardware

18 / 46



Bundles

class DecodeExecute extends Bundle {

val rs1 = UInt(32.W)

val rs2 = UInt(32.W)

val immVal = UInt(32.W)

val aluOp = new AluOp()

}

▶ Collection of values in named fields
▶ Like struct or record

19 / 46



Vectors

val myVec = Vec(3, SInt(10.W))

myVec(0) := -3.S

val y = myVec(2)

▶ Indexable vector of elements
▶ Bundles and Vecs can be arbitrarily nested

20 / 46



IO Ports

class Channel extends Bundle {

val data = Input(UInt(8.W))

val ready = Output(Bool())

val valid = Input(Bool())

}

▶ Ports are Bundles with directions
▶ Direction can also be assigned at instantiation:

class ExecuteIO extends Bundle {

val dec = Input(new DecodeExecute())

val mem = Output(new ExecuteMemory())

}

21 / 46



Modules

class Adder extends Module {

val io = IO(new Bundle {

val a = Input(UInt(4.W))

val b = Input(UInt(4.W))

val result = Output(UInt(4.W))

})

val addVal = io.a + io.b

io.result := addVal

}

▶ Organization of components
▶ IO ports defined as a Bundle named io and wrapped into

an IO()
▶ Created (instantiated) with:

val adder = Module(new Adder())

22 / 46



Hello World in Chisel

class Hello extends Module {

val io = IO(new Bundle {

val led = Output(UInt(1.W))

})

val CNT_MAX = (50000000 / 2 - 1).U

val cntReg = RegInit(0.U(32.W))

val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U

when(cntReg === CNT_MAX) {

cntReg := 0.U

blkReg := ˜blkReg

}

io.led := blkReg

}

23 / 46



Tool Flow for Chisel

Hello.scala

scalac

Hello.class

Chisel
JVM

Hello.fir

scala.libchisel3.lib

Verilog 
Emitter

JVM
Treadle

JVM

Hello.vHello.vcd

FIRRTL
JVM

Chisel 
Tester
JVM

good/bad

GTKWave Circuit
Synthesis

Hello.bit

24 / 46



Chisel has a Multiplexer

a
y

sel

b

T

F

val result = Mux(sel, a, b)

▶ So what?
▶ Wait... What type is a and b?

▶ Can be any Chisel type!

25 / 46



Chisel has a Generic Multiplexer

a
y

sel

b

T

F

val result = Mux(sel, a, b)

▶ SW people may not be impressed
▶ They have generics since Java 1.5 in 2004

▶ List<Flowers> != List<Cars>

26 / 46



Generics in Hardware Construction

▶ Chisel supports generic classes with type parameters
▶ Write hardware generators independent of concrete type
▶ This is a multiplexer generator

def myMux[T <: Data](sel: Bool, tPath: T, fPath:

T): T = {

val ret = WireDefault(fPath)

when (sel) {

ret := tPath

}

ret

}

27 / 46



Put Generics Into Use

▶ Let us implement a generic FIFO
▶ Use the generic ready/valid interface from Chisel

class DecoupledIO[T <: Data](gen: T) extends

Bundle {

val ready = Input(Bool())

val valid = Output(Bool())

val bits = Output(gen)

}

28 / 46



Define the FIFO Interface

class FifoIO[T <: Data](private val gen: T)

extends Bundle {

val enq = Flipped(new DecoupledIO(gen))

val deq = new DecoupledIO(gen)

}

▶ We need enqueueing and dequeueing ports
▶ Note the Flipped

▶ It switches the direction of ports
▶ No more double definitions of an interface

29 / 46



But What FIFO Implementation?

▶ Bubble FIFO (good for low data rate)
▶ Double buffer FIFO (fast restart)
▶ FIFO with memory and pointers (for larger buffers)

▶ Using flip-flops
▶ Using on-chip memory

▶ And some more...

▶ This calls for object-oriented programming hardware
construction

30 / 46



Abstract Base Class and Concrete Extension

abstract class Fifo[T <: Data](gen: T, val depth:

Int) extends Module {

val io = IO(new FifoIO(gen))

assert(depth > 0, "Number of buffer elements

needs to be larger than 0")

}

▶ May contain common code
▶ Extend by concrete classes

class BubbleFifo[T <: Data](gen: T, depth: Int)

extends Fifo(gen: T, depth: Int) {

31 / 46



Select a Concrete FIFO Implementation

▶ Decide at hardware generation
▶ Can use all Scala/Java power for the decision

▶ Connect to a web service, get Google Alphabet stock price,
and decide on which to use ;-)

▶ For sure a silly idea, but you see what is possible...
▶ Developers may find clever use of the Scala/Java power
▶ We could present a GUI to the user to select from

▶ We use XML files parsed at hardware generation time
▶ End of TCL, Python,... generated hardware

32 / 46



Binary to BCD Conversion for VHDL

33 / 46



Java Program

▶ Generates a VHDL table
▶ The core code is:

for (int i = 0; i < Math.pow(2, ADDRBITS); ++i) {

int val = ((i/10)<<4) + i%10;

// write out VHDL code for each line

▶ With all boilerplate 118 LoC

34 / 46



Chisel Version of Binary to BCD Conversion

val table = Wire(Vec(100, UInt(8.W)))

for (i <- 0 until 100) {

table(i) := (((i/10)<<4) + i%10).U

}

val bcd = table(bin)

▶ Directly generates the hardware table as a Vec
▶ At hardware construction time
▶ In the same language

35 / 46



Use Functional Programming for Generators

def add(a: UInt, b:UInt) = a + b

val sum = vec.reduce(add)

val sum = vec.reduce(_ + _)

val sum = vec.reduceTree(_ + _)

▶ This is a simple example
▶ What about an arbitration tree with fair arbitration?

36 / 46



Chisel in Teaching

▶ Using/offering it in Advanced Computer Architecture
▶ Spring 2016–2018, 2020–2022 all projects have been in

Chisel
▶ Several Bachelor and Master projects
▶ Students pick it up reasonable fast
▶ For software engineering students easier than VHDL
▶ Switch Digital Electronics 2 at DTU to Chisel (spring

semester 2020)
▶ Issue of writing a program instead of describing hardware

remains

37 / 46



Chisel in Digital Electronic 2

▶ Basic RTL level digital design wit Chisel
▶ Chisel testers for debugging
▶ Very FPGA centric course
▶ Final project is a vending machine
▶ All material (slides, book, lab material) in open source
▶ Tried to coordinate with introduction to programming (Java)

▶ But sometimes I was ahead with Chisel constructs (e.g.,
classes)

38 / 46



Then there was the Lockdown

▶ Switched DE2 to Chisel in 2020
▶ Usually one FPGA board per group
▶ No group meetings
▶ Just virtual labs
▶ Can I do something about it with Chisel?

39 / 46



A Chisel Book

▶ Available in open access (PDF)
▶ In paper from Amazon
▶ see http://www.imm.dtu.dk/˜masca/chisel-book.html
▶ Source at https://github.com/schoeberl/chisel-book

40 / 46

http://www.imm.dtu.dk/~masca/chisel-book.html
https://github.com/schoeberl/chisel-book


What May Happen with an Open-Source Book

▶ A free Chinese translation

41 / 46



Then I got This

▶ A Japanese translation

42 / 46



And One More

▶ A Vietnamese translation

43 / 46



Further Information

▶ https://github.com/schoeberl/chisel-book

▶ https://github.com/schoeberl/chisel-lab

▶ https://www.chisel-lang.org/

▶ https://github.com/ucb-bar/chisel-tutorial

▶ https://github.com/ucb-bar/generator-bootcamp

▶ http://groups.google.com/group/chisel-users

44 / 46

https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-lab
https://www.chisel-lang.org/
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users


Summary

▶ We need a modern language for hardware/systems design
▶ Chisel is a small language
▶ Embedding it in Scala gives the power
▶ Chisel is good for hardware generators
▶ Supports agile hardware development
▶ We can do co-simulation

45 / 46


