Inclusive Modeling with Sys MD

C. Grimm, S. Post, A. Ratzke, C. Zivkovic, A. Khushnood S. Dalecke, H. Heermann, F. Wawrzik, J. Martin

TU Kaiserslautern, Chair of Cyber-Physical Systems

Inclusive Modeling with SysMD

- 1. "Inclusive" systems engineering
- 2. SysMD Notebook & SysMD language
- 3. Development environment and software details
- 4. Roadmap for SysMD How can I contribute?

Why "systems engineering"? Why "inclusiveness"?

First known complex project reported by literature [Genesis 11:1–9] is the tower of Bable:

"... let's confuse their language, so that they may not understand one another's speech. ... and they left off building the city."

Lesson learned: successful system development requires

- understanding of people from different disciplines;
 they clearly use different languages.
- **2. motivation** to use and invest in a "common language".

Inclusive Modeling with SysMD

Modeling and analysis of requirements, specification, knowledge

- Inclusive modeling = we want to allow <u>everybody</u> in a development team to
 - o document his knowledge and needs,
 - o read a specification and requirements documents,
 - o maintain documents & models.
- Motivate everybody by <u>additional values</u> beyond "documentation"
 - o Consistency checking, from requirements, development to operation, runtime-verification,
 - Al based recommendations & queries,
 - Links with simulation, operation.

Related work

- Markdown [Aaron Schwatz, John Gruber: http://www.aaronsw.com/weblog/001189]
 - o Document software, i.e. GitHub
 - Jupyter Notebook, Matlab Notebook Describe, Code, Execute approach
- DOORS [IBM]
 - o Document, tracking requirements, manage of changes.
- OWL [https://www.w3.org/TR/owl-features/, https://www.w3.org/TR/turtle/]
 - Model knowledge; ~between natural and formal languages
- SysML [OMG]
 - Draw diagrams, comment/documentation model
- SysMLv2 [OMG, https://github.com/Systems-Modeling/SysML-v2-Release]
 - Textual language SysMLv2, interoperability via REST API, Metamodel

Related work

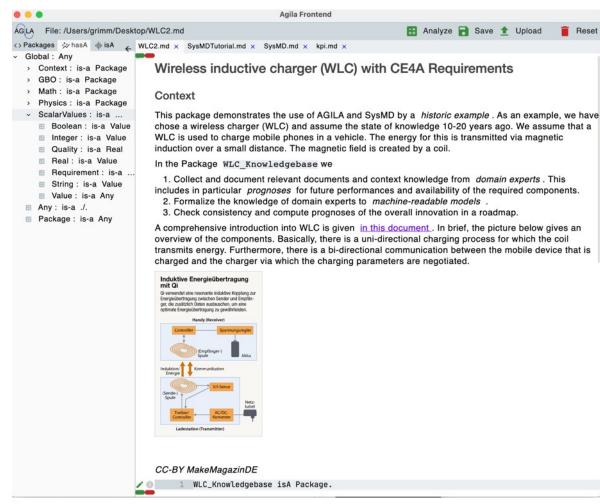
- Markdown [Aaron Schwatz, John Gruber: http://www.aaronsw.com/weblog/001189]
 - o Document software, i.e. GitHub
 - Jupyter Notebook, Matlab Notebook describe, code, execute approach
- DOORS [IBM]
 - Document, tracking requirements, manage of changes.
- OWL [https://www.w3.org/TR/owl-features/, https://www.w3.org/TR/turtle/]
 - Model knowledge; ~between natural and formal languages
- SysML [OMG]
 - o Draw diagrams, comment/documentation model
- SysMLv2 [OMG, https://github.com/Systems-Modeling/SysML-v2-Release]
 - o Textual language SysMLv2, interoperability via REST API, Metamodel

SysMD

- **1)** First: Describe, explain
- 2) Then: Model
- 3) Continuously: Check, update

Inclusive modeling with SysMD

- 1. Introduction
- 2. SysMD notebook & SysMD language
- 3. Development environment and software details
- 4. Roadmap for SysMD How can I contribute?


SysMD Notebook & Language Overview

SysMD Notebook

Notebook-like tool Markdown editor Markdown renderer Code editor for SysMD/SysMLv2 Compiler

Proof-of-Concept implementation, work in progress

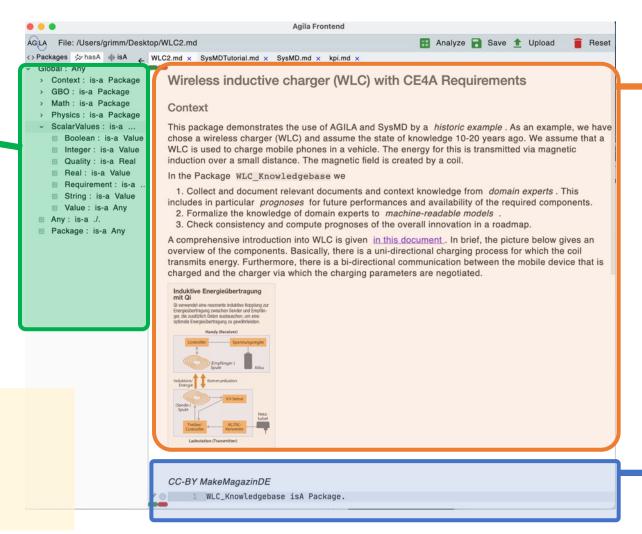
(further windows for results of analysis, errors, ...)

SysMD Language

modeling & documentation language

- Markdown (MD)
- Feature models
- Requirements
- Constraints
- ..

SysMD Notebook: UI Overview



Navigation

- Projects
 - Branches, Commits
- Taxonomy
- Decomposition/ownership
- Relationships

Not shown are windows for

- Results of analysis
- Agenda
- Warnings, errors

Documentation

- Markdown-format
- Tables, figures, links, ...

Models

- In SysMD, SysMLv2 textual
- Taxonomy
- Decomposition
- Values, constraints
- Relationships

SysMD Notebook: Constraint Propagation (Bi-Dir.)

- Direct dependencies given by expressions
 - Bi-directional constraint propagation for Reals, Integers;
 - Check and conversion of Units, Domains (SI, national units, dB, Date/Time)
 - Satisfiability problem for Booleans
- Inheritance
 - Models variants or potential solutions of similar things
 - O Consistency check: Liskov principle satisfied?
- Decomposition
 - SUM(...) computes aggregations (transitive)
 - Constraint propagation includes cardinality

```
Example is A Component.
 Example hasA
              Real(10 .. 100)[cm],
     height:
     width:
               Real(1 .. 1.1) [m],
               Real(1 .. 1.1) [m],
     length:
               Real(1 .. 2) [m^3] = height * width * length.
     volume:
Vehicles::Car hasA power: Real(10 .. 1000) [kW].
Vehicles:: VW hasA power: Real(20 .. 1010) [kW].
Vehicles::BMW hasA power: Real(150 .. 400) [kW].
Vehicles::Car::power = 10..1000 kW
Vehicles::VW::power = 20..1010 kW
Vehicles::BMW::power = 150..400 kW
INFO in Vehicles::Vehicle: different units in different subclasses
ERROR in Vehicles::VW::power: INCONSISTENCY: subclass value
20..1010 of power must be refinement of superclass value 10..1000
```

```
Vehicles::Car hasA
body: CarParts::Body,
wheels: [4 .. 4] CarParts::Wheel,
engine: [1 .. 2] CarParts::Engine,
mass: Real [kg] = SUM(mass).
Vehicles::Car::mass = 500..700 kg
```

B		B									
В		В									
В		В	E Ch.	Grimr t al.: I	nclusi e Mode	ling with SysM	D; FSi 20 22, Pa	ris 20 22		1	

SysMLv2 vs. SysMD language

SysML v2 (textual)

- Users: modeling and SE experts.
- Syntax close to programming languages.
- Documentation added to model.
- Expressions for modeling of constraints, spec.
- Based on KerML metamodel, SysML API

```
Wheel {
  value mass: Real = 70 [kg];
  // model mass with 50 to 100 kg
}

Car :> Vehicle {
  part Wheel [4 .. 8];
  in value mass = ... // model constraint, unit, ...
```

SysMD

 \neq

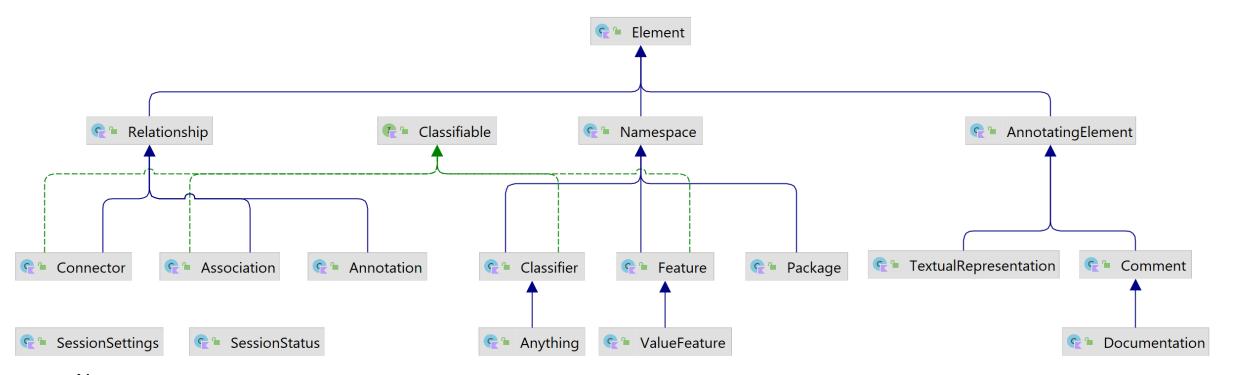
- Users: domain experts.
- Closer to natural language, "top-down", interactive
- Model added to documentation (text, videos, ...).
 - Syntax separates specification and modeling.
 - Based on KerML metamodel, SysML API (subsets).

```
Car isA Vehicle.

Car hasA
  wheel: [4 .. 8] Wheel,
  mass: Mass(100..1000) kg = sumHasA(mass).

Wheel hasA
  mass: all Mass(50 .. 100) kg = ....
```

SysMD Syntax Cheatsheat


Subject	Predicate	Object	More	End
Name <element></element>	defines	s Classification		
	Classification is A	Name <classifiable, classofmetamodel=""></classifiable,>		
	FeatureSpec. hasA	Name: [all one] [Multiplicity] Name<⊤ype> [Constraints] [= Expr.]	(, FeatureSpec)*	
	imports	Name <project, namespace=""></project,>	(, Name)*	
	Relationship Name <association></association>	Name <element></element>	(, Name)*	

Pre-defined classes and projects

- Any(thing) = root of all taxonomies (isA); Global = root of ownership/features (hasA)
- ScalarValues (Classifies Real, Boolean, Integer, ... as in SysMLv2)
- ISO26262 Ontology: Element, Function, Component, Part, SoftwareUnit, (...), also relationships:
 - Component implements Function, Component satisfies Requirement, Processor executes Software
- GBO, MissionProfiles, Math, Physics.

KerML metamodel implementation

Note:

- 1) We are not yet fully compatible ... working on it, but quite ok.
- 2) We strive to consolidate number of classes a bit. (e.g., ValueFeature includes Expression, Multiplicity, FeatureValue, ...)
- 3) We strive to increase performance, reduce complexity not all relationships represented by instances of Relationship (e.g. ownership, inheritance)

Inclusive Modeling with SysMD

- 1. Introduction
- 2. SysMD notebook & SysMD language
- 3. Development environment and software details
- 4. Roadmap for SysMD How can I contribute?

Development environment

- Gradle v7 and/or IntelliJ IDEA, dependencies
 - o Commonmark Markdown parser
 - Apache math (LP solver) and jAADD for CSP/nonlinear/discrete problems
- Kotlin JVM
 - Jetpack Compose Desktop for UI
- Optional for REST API, Backend
 - Spring boot, ArrangoDB as repository
- Junit Jupiter (500-1000+ tests depending on branch)

Development environment

- Nothing is better than a live look at the code
 - o Build: "gradle run"
- ... and, of course, running code & demo ©

(live ... not as video)

SysMD home page

https://cpsgit.cs.uni-kl.de/open/sysmd

Contents

- 1. Introduction
- 2. SysMD Notebook
- 3. SysMD Language
- 4. Roadmap for SysMD How can I contribute?

SysMD wants you!

- Students, interested individuals (projects/theses/ ...)
 - o Improvements in Markdown rendering
 - o Improvements in code editor
 - SysMLv2 textual, KerML interoperatbility
 - SAT/SMT interfaces
 - o Tests
 - o Knowledge bases, models
 - o ... any own ideas? ...

Industry

- EC or nationally funded projects
- Case studies

Outlook

- Currently, still a few issues and bugs
 - Some industrial users do evaluation
 - WiP: Runtime-Verification, simulation-data needs integration
 - WiP: More beautiful Web-Frontend (React JS, Hierarchical documents, etc.)
- 1st Release to public (open source) Summer 2022
 - o Basically, as shown, but with less bugs & some libraries
 - Open source for most parts

 (Small parts in probabilistic CSP are patent pending; NOT the modeling; is not necessarily needed)
- 2nd Release end 2023/2024: "modular digitalization toolkit"
 - Integrated DevOps interface
 - Generation of interfaces to virtual prototypes