
Wishbone:

a free SoC bus family

Tristan Gingold – FSiC 2022

2

What is Wishbone ?

● A SoC Bus
– Like AXI4, AXI3, AHB, APB, Avalon, CoreConnect
– Teaser: More APB/AXI4-Lite than AHB/AXI4

● Initial specifications by Wade D. Peterson
● Public domain specification

– OpenSource friendly
● You can use the Wishbone logo if you follow the

specs

3

Why Wishbone ?

● Free license, free of charge
● Widely used in FOSS projects
● Many cores available

– I2c, spi, cpus, timers, bridges, eth, crypto, ...
– Main SoC bus for opencores.org

● Use in industry ?
● Simple
● Quite good specification
● Many examples

4

History

● Revision A (preliminary) - June 16, 1999
● Revision A.1 (preliminary) - Updated July 27, 1999
● Revision B (preliminary) – Updated January 5, 2001
● Revision B.1 (preliminary) – Updated January 8, 2001

– Remove all copyright notices and place into the public
domain.

● Revision B.2, Released: October 10, 2001
● Revision B.3, Released: September 7, 2002

– Richard Herveille, OpenCores Organization
● Revision B.4 - 2010

5

The Document

● B3: Notice is hereby given that this document is not copyrighted, and
has been placed into the public domain. It may be freely copied and
distributed by any means

● B4: Copyright Notice
– This ebook is Copyright © 2010 OpenCores
– (and with the above text from B3)

● Document sources were not available
● Recreated in markdown:

– https://github.com/fossi-foundation/wishbone
– From B3

https://github.com/fossi-foundation/wishbone

6

A Family

● Any address size
● 8, 16, 32 or 64 bit data size
● 8, 16, 32 or 64 bit data granularity
● Any endianness

Like many/most SoC bus, but:
● Optional signals (TAG, RTY, ERR, LOCK)
● 3 flavours: classic, pipelined or registered

7

Main principles

● Master/Slave
● Clock synchronous
● Unidirectional wires (data in and data out buses)
● Address decoding by master

– A slave is targeted on every transaction
– A slave has to reply (no timeout)

● Strobe / Ack mechanism

8

Naming convention

● _I: input
● _O: output
● (): Bus

● Usually you connect XXX_O to XXX_I !

9

Principle (classic)

● CYC: valid cycle in progress
● STB: valid transfer in progress

– Usually CYC = STB except for read-modify-write
● DAT: data
● ADR: address
● WE: write enable
● SEL: byte select (for write)

– Which bytes of the word are written
● ACK: acknowledge
● + RST, CLK

10

Waveforms
-1 0 1 2 3

CLK_I

ADR_O()

DAT_I() VALID

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

M
a

s
te

r
S

ig
n

a
ls

11

The Good

● It’s simple
– Simplification: make CYC optional

● Could even support asynchronous slaves
– ACK ← CYC and STB
– (Permission 3.10)

● Rate control

● No license, ...

12

The Bad

● It’s slow: 50% BW when combinatorial

3.1.3 Handshaking Protocol

-1 0 1 2 3 4

CLK_I

ADR_O()

DAT_I()

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

M
a

s
te

r
S

ig
n

a
ls

13

The Bad

● It’s slow: 33% BW when registered

3.1.3 Handshaking Protocol

-1 0 1 2 3 4 5 6

CLK_I

ADR_O()

DAT_I()

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

M
a

s
te

r
S

ig
n

a
ls

14

The Bad

● It’s slow; why ?
● At least two cycles for one transaction

– 3.1.3 Handshaking Protocol:
– if it (ACK) is asserted, then [STB_O] is negated.

Mitigations:
● Use other wishbone flavours

15

Wishbone flavours

● Wishbone registered feedback
– Defined by B.3
– Bursts
– CTI: cycle type
– BTE: burst type extension

● More complex
● Use only by OpenRISC CPU ?

16

Wishbone flavours

● Wishbone pipelined
– Defined by B.4
– STB and ACK are pulses
– May have multiple transactions in fly
– New slave output: STALL for throttling

● Almost as simple as classic

17

Pipelined wishbone

-1 0 1 2 3 4 5

CLK_I

ADR_O()

DAT_I()

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

M
a

s
te

r
S

ig
n

a
ls

18

Pipelined wishbone

-1 0 1 2 3 4

CLK_I

ADR_O()

DAT_I()

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

M
a

s
te

r
S

ig
n

a
ls

Assuming STALL is not active

19

The Bad

● Optional termination signals (in addition to ACK)
– RTY: retry
– ERR: error

● What to do if your master doesn’t support them ?
– (and your slave generate them)
– ACK_I ← ACK_O or RTY_O or ERR_O ?

20

The Bad

● The semantic of RTY or ERR varies among buses
– Does it affect only a beat (wishbone) ?
– Or the whole burst (AXI) ?

● Makes bridge difficult to write or incorrect

● Conclusion: avoid RTY and ERR

21

The Hugly (classic)

● It is not easy to add a pipeline register

For master outputs:
● Violate 3.1.3 Handshaking Protocol:

– [STB_O] remains asserted until the SLAVE asserts
one of the cycle terminating signals [ACK_I]

● Not a problem with the pipelined flavour
– But need to deal with STALL

22

Master pipeline
-1 0 1 2 3 4

CLK_O

ADR_O()

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

Master

Master
-1 0 1 2 3 4 5

CLK_O

ADR_O()

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

Slave
STB must be deasserted

23

The Hugly (2)

● When does a transaction end ?
– After ACK, STB has to be negated (3.1.3)
– At the next cycle
– But what about ACK ?

24

The Hugly: ACK

● RULE 3.50
– SLAVE interfaces MUST be designed so that the

[ACK_O], [ERR_O], and [RTY_O] signals are asserted
and negated in response to the assertion and negation of
[STB_I].

● Doesn’t specify when ACK is asserted or deasserted
● Clearly, ACK can be asserted many cycles later
● So, can it be de-asserted many cycles later ?

– If so, can STB be activated when ACK is too ?
– Will ACK terminate the second transaction ?

25

The Hugly: ACK

ACK for the first
 or the second transaction ?

-1 0 1 2 3 4 5

CLK_O

ADR_O()

DAT_O()

WE_O

SEL_O()

STB_O

CYC_O

ACK_I

Assert ACK for only 1 cycle,
Combinatorial slaves are OK.

26

The Hugly: ACK

● Worst:
● PERMISSION 3.35

– Under certain circumstances SLAVE interfaces MAY be
designed to hold [ACK_O] in the asserted state. This
situation occurs on point-to-point interfaces where there
is a single SLAVE on the interface, and that SLAVE
always operates without wait states.

● Eh, I thought it was a ‘MUST’…
● Zero wait states means async slave
● Ok, that’s a simplification

27

The Hugly: ACK

● Worst in worst:
● RULE 3.55

– MASTER interfaces MUST be designed to operate
normally when the SLAVE interface holds [ACK_I] in
the asserted state.

● What does ‘operate normally’ mean ?
● Does the spec tells it must work ?

28

Conclusion

● Wishbone exists
● It is free
● It works
● It is used!

● Combinatorial slaves are always OK
● Use a single pulse for ACK
● Avoid RTY and ERR

29

Conclusion

● There is a spec
● Many details and waveforms
● Rules are numbered
● Examples

● Maybe the spec is too long
● Risk of incoherences

30

Conclusion

● Writing specifications is an art!
● A natural language (English) may not be precise enough
● Formal methods help

– TODO: add SVA/PSL ?

● Is there a room for a slightly improved SoC bus ?
– Humm...

● Prefer pulses to state (for easier pipelining)
● Avoid retry or error

07/06/22

31

“
”

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

