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What is Wishbone ?

● A SoC Bus
– Like AXI4, AXI3, AHB, APB, Avalon, CoreConnect
– Teaser: More APB/AXI4-Lite than AHB/AXI4

● Initial specifications by Wade D. Peterson
● Public domain specification

– OpenSource friendly
● You can use the Wishbone logo if you follow the 

specs
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Why Wishbone ?

● Free license, free of charge
● Widely used in FOSS projects
● Many cores available

– I2c, spi, cpus, timers, bridges, eth, crypto, ...
– Main SoC bus for opencores.org

● Use in industry ?
● Simple
● Quite good specification
● Many examples
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History

● Revision A (preliminary) - June 16, 1999
● Revision A.1 (preliminary) - Updated July 27, 1999
● Revision B (preliminary) – Updated January 5, 2001
● Revision B.1 (preliminary) – Updated January 8, 2001

– Remove all copyright notices and place into the public 
domain.

● Revision B.2, Released: October 10, 2001
● Revision B.3, Released: September 7, 2002

– Richard Herveille, OpenCores Organization
● Revision B.4 - 2010
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The Document

● B3: Notice is hereby given that this document is not copyrighted, and 
has been placed into the public domain. It may be freely copied and 
distributed by any means

● B4: Copyright Notice
–  This ebook is Copyright © 2010 OpenCores
– (and with the above text from B3)

● Document sources were not available
● Recreated in markdown:

– https://github.com/fossi-foundation/wishbone
– From B3

https://github.com/fossi-foundation/wishbone
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A Family

● Any address size
● 8, 16, 32 or 64 bit data size
● 8, 16, 32 or 64 bit data granularity
● Any endianness

Like many/most SoC bus, but:
● Optional signals (TAG, RTY, ERR, LOCK)
● 3 flavours: classic, pipelined or registered
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Main principles

● Master/Slave
● Clock synchronous
● Unidirectional wires (data in and data out buses)
● Address decoding by master

– A slave is targeted on every transaction
– A slave has to reply (no timeout)

● Strobe / Ack mechanism
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Naming convention

●  _I: input
● _O: output
● (): Bus

● Usually you connect XXX_O to XXX_I !
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Principle (classic)

● CYC: valid cycle in progress
● STB: valid transfer in progress

– Usually CYC = STB except for read-modify-write
● DAT: data
● ADR: address
● WE: write enable
● SEL: byte select (for write)

– Which bytes of the word are written
● ACK: acknowledge
● + RST, CLK
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Waveforms
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The Good

● It’s simple
– Simplification: make CYC optional

● Could even support asynchronous slaves
– ACK ← CYC and STB
– (Permission 3.10)

● Rate control

● No license, ...
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The Bad

● It’s slow: 50% BW when combinatorial

3.1.3 Handshaking Protocol
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The Bad

● It’s slow: 33% BW when registered

3.1.3 Handshaking Protocol
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The Bad

● It’s slow; why ?
● At least two cycles for one transaction

– 3.1.3 Handshaking Protocol:
– if it (ACK) is asserted, then [STB_O] is negated.

Mitigations:
● Use other wishbone flavours
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Wishbone flavours

● Wishbone registered feedback
– Defined by B.3
– Bursts
– CTI: cycle type
– BTE: burst type extension

● More complex
● Use only by OpenRISC CPU ?
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Wishbone flavours

● Wishbone pipelined
– Defined by B.4
– STB and ACK are pulses
– May have multiple transactions in fly
– New slave output: STALL for throttling

● Almost as simple as classic
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Pipelined wishbone
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Pipelined wishbone
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Assuming STALL is not active
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The Bad

● Optional termination signals (in addition to ACK)
– RTY: retry
– ERR: error

● What to do if your master doesn’t support them ?
– (and your slave generate them)
– ACK_I ← ACK_O or RTY_O or ERR_O ?
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The Bad

● The semantic of RTY or ERR varies among buses
– Does it affect only a beat (wishbone) ?
– Or the whole burst (AXI) ?

● Makes bridge difficult to write or incorrect

● Conclusion: avoid RTY and ERR
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The Hugly (classic)

● It is not easy to add a pipeline register

For master outputs:
● Violate 3.1.3 Handshaking Protocol:

–  [STB_O] remains asserted until the SLAVE asserts 
one of the cycle terminating signals [ACK_I]

● Not a problem with the pipelined flavour
– But need to deal with STALL 
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Master pipeline
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The Hugly (2)

● When does a transaction end ?
– After ACK, STB has to be negated (3.1.3)
– At the next cycle
– But what about ACK ?
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The Hugly: ACK

● RULE 3.50
– SLAVE interfaces MUST be designed so that the 

[ACK_O], [ERR_O], and [RTY_O] signals are asserted 
and negated in response to the assertion and negation of 
[STB_I]. 

● Doesn’t specify when ACK is asserted or deasserted
● Clearly, ACK can be asserted many cycles later
● So, can it be de-asserted many cycles later ?

– If so, can STB be activated when ACK is too ?
– Will ACK terminate the second transaction ?
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The Hugly: ACK

ACK for the first
 or the second transaction ?
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Combinatorial slaves are OK.



 

26

The Hugly: ACK

● Worst: 
● PERMISSION 3.35

– Under certain circumstances SLAVE interfaces MAY be 
designed to hold [ACK_O] in the asserted state. This 
situation occurs on point-to-point interfaces where there 
is a single SLAVE on the interface, and that SLAVE 
always operates without wait states.

● Eh, I thought it was a ‘MUST’…
● Zero wait states means async slave
● Ok, that’s a simplification
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The Hugly: ACK

● Worst in worst:
● RULE 3.55

– MASTER interfaces MUST be designed to operate 
normally when the SLAVE interface holds [ACK_I] in 
the asserted state.

● What does ‘operate normally’ mean ?
● Does the spec tells it must work ?
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Conclusion

● Wishbone exists
● It is free
● It works
● It is used!

● Combinatorial slaves are always OK
● Use a single pulse for ACK
● Avoid RTY and ERR
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Conclusion

● There is a spec
● Many details and waveforms
● Rules are numbered
● Examples

● Maybe the spec is too long
● Risk of incoherences
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Conclusion

● Writing specifications is an art!
● A natural language (English) may not be precise enough
● Formal methods help

– TODO: add SVA/PSL ?

● Is there a room for a slightly improved SoC bus ?
– Humm...

● Prefer pulses to state (for easier pipelining)
● Avoid retry or error



07/06/22
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“
”

Thanks!
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