

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

1 / 43

KLayout DRC/LVS FAQ +
Tutorial
Frequently Asked Questions – Explained

Matthias Köfferlein, https://www.klayout.org

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

2 / 43

Prologue and Disclaimer

This is not a beginner’s tutorial
about DRC or LVS with KLayout

:(

For a basic introduction see here:

https://www.klayout.de/doc-qt5/manual/

https://www.klayout.de/doc-qt5/manual/

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

3 / 43

Structure

Demo files and source code available here:
https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk
(shown as “...”)

Master topics
● General
● DRC
● LVS

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

4 / 43

General

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

5 / 43

Raw scripts vs. DRC / LVS

Raw scripts:
● Can be either Python or Ruby
● Act directly on the application

API
● Rich capabilities (UI generation,

PCell coding, Layout creation,
computational geometry ..)

● API knowledge required

DRC and LVS scripts:
● Use Ruby always
● Act as facade for API (A “domain

specific language”)
● Simple language for verification

and layout manipulation purposes
● Direct access to API is possible,

but not encouraged

https://www.klayout.de/forum/discussion/1749 https://www.klayout.de/forum/discussion/1896

https://www.klayout.de/forum/discussion/1749
https://www.klayout.de/forum/discussion/1896

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

6 / 43

How to run DRC from Python?

Yes, the preferred way is through pya.Macro

DRC script: test.drc – adds layer 2/0

Demonstrates:
● Calling DRC

from Python
● Sharing objects

between Python
and DRC (Ruby)

executes DRC script

.../python/call_drc_from_python/drc_from_python.lym

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/blob/main/klayout-talk/python/call_drc_from_python/drc_from_python.lym

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

7 / 43

How to modularize DRC/LVS?

Method 1: the standard way “instance_eval”

Issue: code inside included file can modify variables
in calling scope, but not create new ones

evaluates file in
DRC context

need to define variable here, so the included file can
pass the value back to the calling scope

“include_me.drc”:

.../drc/include/include1.lydrc

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/blob/main/klayout-talk/drc/include/include1.lydrc

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

8 / 43

How to modularize DRC/LVS?

Method 2: KLayout preprocessor

● This is not standard Ruby!
● KLayout text-substitutes the pseudo-comment by the

included file
● Paths are resolved relative to calling file
● The interpreter’s source file and line number information

may not be accurate

Included file “include_me.drc”:

.../drc/include/include2.lydrc

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/blob/main/klayout-talk/drc/include/include2.lydrc

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

9 / 43

DRC

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

10 / 43

How to check every layer?

Example: grid check on all layers

gives you every layer that is in the source layout

Direct execution allows for dynamic scripting in
contrast to table- or graph-based DRC tools:
● Loops
● Branches

.../drc/all_layers/grid_check.lydrc

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/blob/main/klayout-talk/drc/all_layers/grid_check.lydrc

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

11 / 43

How to improve speed?
1. Mode

Default Mode

● Flat polygon handling
● Single-threaded
● No overhead
● Use for small layouts
● No side effects

Tiled Mode

● Need to optimize tile
size

● Finite lookup range
● Output is flat
● Multithreading enabled
● Scales with #CPUs
● Scales with layout area
● Predictable runtime

and memory footprint

Note that you can switch modes and tile parameters during execution!

Deep Mode

● Preserves hierarchy in
many cases

● Very fast / very slow
● Typically less memory
● Does not predictably

scale with #CPU
● Performance not

predictable
● Mainly used for LVS

layer preparation
● Still somewhat

experimental

Under development

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

12 / 43

How to improve speed?
2. Use low power alternatives

● Multichannel operations: and_not, split_*

● Use sparse layers for first operands in commutable operations

– The first operand determines the complexity

● Avoid implicit polygon merging

– avoid huge connected regions with many holes (meshes, inverted
layers)

– raw mode avoids merging

– boolean operations do not merge – prefer those

– DRC functions will often merge inputs

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

13 / 43

How to improve speed?
3. More options

● Edge-mode operations may be faster than polygon operations

● Disable shielding
(https://www.klayout.de/doc-qt5/manual/drc_runsets.html#k_11)

● Disable figure breaking in deep mode
(https://www.klayout.de/doc-qt5/about/drc_ref_global.html#h2-1095)

renders same result, except
shielding is not available

https://www.klayout.de/doc-qt5/manual/drc_runsets.html#k_11
https://www.klayout.de/doc-qt5/about/drc_ref_global.html#h2-1095

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

14 / 43

How to improve speed?
4. Feed me samples
Debugging performance issues is a tedious and time consuming
process

● Needs full access to a representative test case with layout,
script and other inputs

● Synthetic test cases usually highlight the wrong problem

Sadly, real-world testcases usually cannot be shared

But:

● It is often possible - with some effort - to break down a testcase
into a reduced one which reproduces the problem while not
disclosing secrets

Talk to your boss!

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

15 / 43

How to improve speed?
5. Core code optimization (example)

touching cells overlapping cells separated cells

200x200
array

Space check touching overlapping separated

tiled (10x10)
1 thread

6.10 s 6.17 s 1.02 s

deep ~1300 s (0.27)
131 s
0.200 s *)

~1300 s (0.27)
127 s
0.210 s *)

0.04 s

space
violation

*) without pre-merging: error marker duplication happens

Preliminary

.../drc/slow_and_fast_deep_mode

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk/drc/slow_and_fast_deep_mode

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

16 / 43

How to reduce memory?
1. Release shape memory (“forget”)
Every DRC statement is a function call, every layer is a variable
holding the layer’s shapes (directly or indirectly)

DRC execution is single-pass

A layer may still be used: it cannot be released automatically

Use “forget” if you do not need the layer anymore:

releases memory for these layers:
after “forget” you can no longer use them

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

17 / 43

How to reduce memory?
2. Mode

Default Mode

● Flat polygon handling
● Worst option in terms

of memory
● Use only for small

layouts

Tiled Mode

● Low internal memory
usage

● Results are still flat
● Flat output is not

memory efficient
● Good for DRC - result

is supposed to be
empty :)

● Bad for computing
dense intermediate
layers or manipulating
layouts

Note that you can switch modes and tile parameters during execution!

Deep Mode

● Temporary memory
required for analysis

● Results are often
hierarchical, hence
memory efficient

● See notes on next
slide ...

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

18 / 43

How to reduce memory?

Deep mode pitfalls
Shape propagation / flatten may occur if

● One of the operands of an operation is flat (specifically “big rectangle NOT
something”)

● Hierarchical meshes get merged - e.g. as input to “size” and DRC checks

● Cell variant formation in required (e.g. grid check with off-grid instances)

Merging

● Needed for operations
that need merged
polygons (e.g. size)

● Happens internally
● Huge polygons may

appear up in the
hierarchy

● Raw mode disables
merging

Shape propagation

● Deep mode considers
shape interactions

● Computation happens on
the hierarchy level where
these interactions happen
first

● Beware of flat inputs –
operations will happen on
top level in flat mode

Cell variants

● Cells are duplicated and
instances are reassigned

● They are needed for
operations which are not
translation or rotation invariant

● E.g. snapping, scaling,
transformations

● Magnified instances usually
create variants

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

19 / 43

How to reduce memory?

Deep mode pitfalls: merging

Output (white):
huge merged polygon
(160k points) - flat

Output (white):
hierarchical processing
single polygon inside subcell

input (1/0)
200x200 stitched array of non-overlapping cells

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

20 / 43

Why doesn’t KLayout read
Calibre decks?

SVRF (Calibre’s verification language) is
protected IP, so it cannot be implemented in
FOSS tools

The recommended approach is to read DRC
decks from a common source (e.g. tables,
Python code ..) and to supply generators for
different target tools

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

21 / 43

What is “Universal DRC”?
“Universal DRC” is a feature of KLayout >= 0.27

Feature:

output = input.drc(function)

Think of “drc” as a “for each” loop on every cluster of “layer” and other inputs.

“function” is a combined expression delivering shapes which are collected in
“output”.

These combined expressions can involve inputs from different sources:
● “primary”: the shapes from “input”
● “foreign”: shapes from “input”, outside current cluster
● “secondary”: shapes from other layers

“function” is a combination of atomic functions, methods and operators.

Application:
● Extended DRC checks (combined checks, more relations than “less”)
● Combined filters
● New applications using “foreign”

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

22 / 43

What is “Universal DRC”?
Example: “critical area”

Defect with given size

“critical area”
A defect hitting this area with its
center will short wires A and B
CA is a metric for defect sensitivity.

A

B

.../drc/universal_drc/drc.lydrc

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/blob/main/klayout-talk/drc/universal_drc/drc.lydrc

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

23 / 43

How to implement width-
dependent space checks?

1
2

00

(0)

(1)+(2)

(2)
“first_edges” will select the counter-
clockwise edges suitable for “space”

../scripts/drc/.../drc/width_dependent_space

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk/drc/width_dependent_space

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

24 / 43

Where is “connected”?

A: It is not there (yet)

In other systems this feature allows checking
for space only if the shapes are (not) connected

Implementation requirements:
● Needs a net annotation on the shapes
● Easy in flat, difficult in tiled or deep mode
● Proposal: employ the hierarchical net

representation which “l2n” database provides
– i.e. introduce space checks between nets

TODO

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

25 / 43

How to do a radius check?
No built-in function there, but this idea:

r = 1 r = 1.5 r = 0.5 r = 0

.../drc/radius_check

Checks Radius >= 1 µm

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk/drc/radius_check

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

26 / 43

How to properly do an
enclosure check?

There is an enclosing/enclosed feature, but it does not
recognize shapes being outside the enclosing area!

Correct implementation: twofold check

(1) (2)

sees (1)

sees (2)

.../drc/enclosure_check

1

2

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk/drc/enclosure_check

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

27 / 43

LVS

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

28 / 43

How to ignore device parameters?

.SUBCKT resistor
 R1 A B 1k
.ENDS

5 □ = 0.5k

100 Ω/□

To force a match use “tolerance” or “ignore_parameter”
https://www.klayout.de/doc-qt5/manual/lvs_compare.html#h2-136

100% tolerance =
“match always”

.../lvs/ignore_parameters/lvs.lylvs

https://www.klayout.de/doc-qt5/manual/lvs_compare.html#h2-136
https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/blob/main/klayout-talk/lvs/ignore_parameters/lvs.lylvs

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

29 / 43

How to enable device parameters?

.SUBCKT resistor
 R1 A B 1k W=1u
.ENDS

5 □ = 1k
W=2

200 Ω/□

“W” is a secondary parameter and not compared by default.
To force a mismatch use “enable_parameter”
https://www.klayout.de/doc-qt5/manual/lvs_compare.html#h2-227

.../lvs/additional_parameters/lvs.lylvs

https://www.klayout.de/doc-qt5/manual/lvs_compare.html#h2-227
https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/blob/main/klayout-talk/lvs/additional_parameters/lvs.lylvs

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

30 / 43

How to write device subckts?

Spice output can be customized with a “Spice Writer Delegate”

● Delegate pattern: implement some aspects externally

● Delegates are used to redirect the flow to custom code

● Full code: https://www.klayout.de/doc-qt5/manual/lvs_io.html#h2-37

Called initially to
write some header

Called to write a
device

https://www.klayout.de/doc-qt5/manual/lvs_io.html#h2-37

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

31 / 43

How to read device subckts?

Spice input can be customized with a “Spice Reader
Delegate”

● Similar to Spice Writer Delegate, but for reading and
somewhat more complex

● Several levels of integration for tailoring the parser process

– Atomic: translate net names

– Spice card: parse card strings into element data

– Devices: build devices from parsed element data

– Subcircuits: filter model subcircuits

● Full code:
https://www.klayout.de/doc-qt5/manual/lvs_io.html#h2-146

https://www.klayout.de/doc-qt5/manual/lvs_io.html#h2-146

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

32 / 43

How to make new devices?

KLayout offers some standard devices, but they may not be sufficient

Example: MOS capacitor in n well

● Similar to PMOS transistor, but S/D implant is n+
● Specified with W, L instead of area
● Standard Spice C element may not applicable
● Multiplier N instead of plain cap value adding for parallel devices

Requirements:

● Special extractor delivering W, L
● Spice reader / writer for using subcircuit models
● Special device combination rules

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

33 / 43

How to make new devices?

GOX

n well

p substrate

n+
poly

P D B

B

D

P

n-well MOS cap device Model

Param: W,L,N

diff

n+
nwellD

P

B

poly

Layout

Spice

X1 G D B MOSCAPN
+ W=10u L=20u N=2

Model

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

34 / 43

How to make new devices?
Full code is here: .../lvs/custom_device

Basic components:
● “Device Extractor” (defs.rb)

– A subclass of RBA::GenericDeviceExtractor
– Initializes the “device class”
– Defines the geometry collector
– Generates the devices from geometry

● “Combiner” (defs.rb)
– A subclass of RBA::GenericDeviceCombiner
– Implements parallel / serial combination of devices

● Spice reader and writer delegates (spice.rb)
– Subclasses of RBA::NetlistSpiceReaderDelegate and RBA::NetlistSpiceWriterDelegate
– Specify how devices are read or written from or to Spice files

● LVS script (lvs.lylvs)
– The standard LVS script making use of the new devices

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk/lvs/custom_device

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

35 / 43

How to make new devices?

Device Extractor: creating the device class
The “device class” is the device “data sheet” – it specifies terminals,
parameters, model name etc.

You can create one from scratch or use of one of the predefined classes
for a basis (enables standard Spice elements like “R”, “C” or “M”)

name, description, default value, is_primary, si_scaling

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

36 / 43

How to make new devices?

Device Extractor: setting up ..
Reimplement “setup” to register the device class and define the extraction
layers

output layers (terminal pins are placed there)

#0
#1
#2
#3
#4
#5

input layers

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

37 / 43

How to make new devices?

Device Extractor: geometry collection
The device extractor collects shapes for devices along a cluster definition
based on a “connectivity” scheme. This is not electrical, but logical.

Connected shapes are clustered together.

include a self-connection to
join shapes into connected
regions

see layer ids mentioned before

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

38 / 43

How to make new devices?

Device Extractor: turning geometry into device

places shapes for terminals
NOTE: terminal, layer by index (0, 1, 2 ...)

gets called for each cluster
(potentially multiple devices)

a_polygon
a

d

p

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

39 / 43

How to make new devices?

Device Combiner
The device combiner checks if devices can be combined, computes the
resulting parameters and rewires the devices so that one is the combined
one and the other becomes disconnected.

Adds “N” multipliers

here we only combine devices
which are geometrically identical

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

40 / 43

How to make new devices?

Device Combiner
The device combiner checks if devices can be combined, computes the
resulting parameters and rewires the devices so that one is the combined
one and the other becomes disconnected.

Adds “N” multipliers

here we only combine devices
which are geometrically identical

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

41 / 43

How to make new devices?
Demo layout and schematic: .../lvs/custom_device

Layers taken from Sky130

mos_cap.gds

C1 C2

DOWN

VSS

schematic.cir

X1
W=24
L=17.2
N=2

X2
W=14
L=17.2
N=2

M1
W=50
L=0.4

NPUMP

lvs.lylvs

X1 X2M1

https://gitlab.com/klayoutmatthias/fsic-2022-demo-files/-/tree/main/klayout-talk/lvs/custom_device

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

42 / 43

Looking for more?

Your community:

https://www.klayout.de/forum/

Your documentation source:

https://www.klayout.de/doc-qt5/manual/

https://www.klayout.de/forum/
https://www.klayout.de/doc-qt5/manual/

FS

iC
 2

0
2

2
 -

 M
a
tt

h
ia

s
K
ö
ff

e
rl

e
in

43 / 43

Thank you for listening!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

