
f8
An 8-Bit architecture based on lessons learned from SDCC and

the architectures it supports

Philipp Klaus Krause

2022-07-08



8-Bit architectures

In between low-end (4-bit) and high-end (32- and 64-bit
microcontrollers).
Typically programmed in C
Devices cost about 1¢ to 1 €
Data memory typically in the range of a few B to a few KB
Program memory typically a few KB
Market dominated by proprietary architectures, and ancient
architectures implemented by many vendors



The Small Device C Compiler

Free C compiler (ANSI C89, ISO C99, ISO C11, ISO C2X)
Freestanding implementation or part of a hosted
implementation
Supporting tools (assembler, linker, simulator, ...)
Works on many host systems (GNU/Linux, Windows, macOS,
Hurd, OpenBSD, FreeBSD, ...)
Targets various 8-bit architectures (MCS-51, DS80C390, Z80,
Z180, eZ80 in Z80 mode, Rabbit 2000, Rabbit 2000A, Rabbit
3000A, SM83, TLCS-90, HC08, S08, STM8, pdk14, pdk15,
pdk13, 6502, PIC14, PIC16)
Has some unusual optimizations that make sense for these
targets (in particular in register allocation)
Users: µC programmers, and retrocomputing/-gaming
developers



Lessons learned - big picture

An efficient stackpointer-relative addressing is essential for
reentrant functions
A unified address space is essential for efficient pointer access
Registers help
Hardware multithreading can replace peripheral hardware, but
it needs good support for atomics, and thread-local storage
Irregular architectures can be very efficient with
tree-decomposition-based register allocation
A good mixture of 8-bit and 16-bit operations helps
Pointers should be 16 bits



Lessons learned - details

Zero-page, etc addressing isn’t useful if we have efficient
stackpointer-relative addressing
A index-pointer-relative read instruction for both 8 and 16 bits
is important
Prefix bytes can be a good way to allow more operands (e.g.
registers)
Hardware 8× 8 → 16 multiplication helps
Division is rare
Multiply-and-add helps speeds up wider multiplications
BCD support provides cheap printf without need for hardware
division
Good shift and rotate support helps



Where do we get

8/16 bit
Irregular CISC
The core becomes bigger than for RISC, but we save so much
on code memory that it is worth it
Approximately 30% lower code size than stm8 - in current
very early experimental SDCC backend


